autosomal dominant

Crouzon Syndrome

Clinical Characteristics
Ocular Features: 

The primary ocular features result from pattern-specific, premature synostoses of cranial sutures.  The orbits are often shallow resulting in proptosis, sometimes to such an extent that exposure keratitis or even spontaneous subluxation of the globe results.  This is exacerbated by the midface hypoplasia that is often present.  As many as 22% of patients have optic atrophy, most likely secondary to chronic papilledema from elevated intracranial pressure.  Strabismus is common, often with a V-pattern exotropia.  Overaction of the inferior obliques and underaction of the superior obliques have been described.  One patient with narrow angle glaucoma has been reported.

Systemic Features: 

The coronal sutures are the most commonly affected by the premature synostosis and hence the skull is often brachycephalic and the forehead is prominent.  Increased intracranial pressure is a risk.  The nose is parrot-beaked and the upper lip is short.  Maxillary hypoplasia from the midface underdevelopment can cause crowding and displacement of the upper teeth.

Genetics

This type of craniosynostosis is caused by mutations in the fibroblast growth factor receptor-2 gene, FGFR2, located at 10q26.  It is generally considered an autosomal dominant disorder based on familial cases but most occur sporadically.  A paternal age effect on mutations has been found. 

The same gene is mutant in other craniosynostosis disorders sometimes clinically separated such as Pfeiffer Syndrome (101600), Jackson-Weiss syndrome (123150), Beare-Stevenson Syndrome (123790), Apert Syndrome (101200), and Saethre-Chotzen Syndrome (101400).  However, this entire group has many overlapping features making classification on clinical grounds alone difficult.  Only Apert syndrome (101200) is caused by a unique mutation whereas other syndromes seem to owe their existence to multiple mutations.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Exposure keratitis must be treated.  Cranial surgery has been necessary for some patients to relieve the papilledema but the post operative outcome can be complicated by hydrocephalus.

References
Article Title: 

Glaucoma with Crouzon Syndrome

Alshamrani AA, Al-Shahwan S. Glaucoma with Crouzon Syndrome. J Glaucoma. 2018
Mar 19. doi: 10.1097/IJG.0000000000000946. [Epub ahead of print].

PubMed ID: 
29557836

Apert Syndrome

Clinical Characteristics
Ocular Features: 

In 10% of patients, keratitis and corneal scarring occur from the sometimes marked proptosis and corneal exposure.  Optic atrophy is present in over 20% of patients.  Strabismus, primarily exotropia, is found in more than 70% and various extraocular muscle anomalies may be detectable.  Usually the exotropia has a V-pattern with overaction of the inferior oblique muscles while the superior oblique is weak.  Amblyopia occurs in nearly 20%.  The lid fissures often slant downward and the eyebrows may be interrupted.

Systemic Features: 

This brachysphenocephalic type of acrocephaly is associated with syndactyly in the hands and feet.  Pre- and postaxial polydactyly may be present.  There is considerable variation in expression with some patients so mildly affected that they appear virtually normal, whereas others have extreme degrees of brachycephaly with high foreheads, midface hypoplasia, and proptosis secondary to shallow orbits.  Imaging often reveals one or more CNS anomalies such as defects of the corpus callosum, partial absence of the septum pellucidum, ventriculomegaly, and sometimes hydrocephalus.  A small but significant proportion of patients have some developmental delay and cognitive impairment.  Over 39% of patients have a normal IQ.

Genetics

This type of craniosynostosis is caused by mutations in the fibroblast growth factor receptor-2 gene, FGFR2, located at 10q26.13.  It is generally considered an autosomal dominant disorder based on familial cases but most occur sporadically.  A paternal age effect on mutations has been found.  The same gene is mutant in allelic disorders sometimes clinically separated and labeled Crouzon (123500) and Pfeiffer (some cases) (101600) syndromes.  Jackson-Weiss syndrome (123150) maps to the same locus.  However, this entire group has many overlapping features making classification on clinical grounds alone difficult.  Only Apert syndrome is caused by mutations in a single gene whereas other syndromes seem to result from mutations in multiple genes.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No specific treatment is available for this disorder but exposure keratitis may require surveillance and therapy.

References
Article Title: 

Axenfeld-Rieger Syndrome, Type 2

Clinical Characteristics
Ocular Features: 

As in RIEG1 and RIEG3, glaucoma is the most serious ocular problem.  In a large family with 11 affected members, 9 had glaucoma.  All had the classic ocular signs of anterior segment dysgenesis, primarily posterior embryotoxon and iris adhesions (for a full description of the ocular features see Axenfeld-Rieger syndrome, RIEG1 [180500]).

Systemic Features: 

Oligodontia, microdontia, and premature loss of teeth are common in type 2.  Maxillary hypoplasia is less common as is hearing loss.  Umbilical anomalies were not present in any affected individuals.  Cardiac defects are rare.

Genetics

This is an autosomal dominant disorder as in the other types.  The locus is at 13q14 but no molecular defect has been defined.  At least two individuals purported to have type 2 were found to have deletions of this segment of chromosome 13.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

The high risk of glaucoma demands lifelong monitoring of intraocular pressure.

References
Article Title: 

Axenfeld-Rieger Syndrome, Type 3

Clinical Characteristics
Ocular Features: 

The most important ocular feature is glaucoma, found in greater than 50% of patients.  It is frequently difficult to control and blindness is far too common.  The ocular phenotype has many similar features found in type 1 (RIEG1) but is discussed separately in this database since it is caused by a different mutation (see Axenfeld-Rieger syndrome, type 1 for a full description of the phenotype).  It has the typical findings of anterior segment dysgenesis including anterior displacement of Schwalbe's line, iris stromal hypoplasia, correctopia, and, of course, glaucoma.

Systemic Features: 

Patients with this type of Axenfeld-Rieger disorder are less likely to have the systemic anomalies such as craniofacial and dental defects often seen in RIEG1.  However, they often have a sensorineural hearing impairment and many have cardiac valvular and septal defects not usually seen in RIEG1.

Genetics

This is an autosomal dominant disorder resulting from a mutation in the FOXC1, a transcription factor gene located at 6p25.  Mutations in the same gene also cause iris hypoplasia/iridogoniodysgenesis (IGDA) (IRID1) 601631) which is sometimes reported as a unique disorder but is either allelic or the same disorder as the type of Axenfeld-Rieger syndrome discussed here.

Type 1 Axenfeld-Rieger syndrome (180500) results from mutations in the PITX1 transcription factor gene and type 4 from mutations in PRDM5, also a transcription factor gene.  However, digenic cases have also been reported with mutations in both PITX1 and FOXC1 genes.

The mutation responsible for type 2 Axenfeld-Rieger syndrome (601499) has as yet not been identified.  Diagnosis is best made by ruling out mutations in PITX1 and FOXC1 although it is claimed that maxillary hypoplasia and umbilical defects are less common in type 2.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

All patients with Axenfeld-Rieger syndromes must be monitored and treated for glaucoma throughout their lives.

References
Article Title: 

Axenfeld-Rieger syndrome

Seifi M, Walter MA. Axenfeld-Rieger syndrome. Clin Genet. 2017 Oct 3. doi: 10.1111/cge.13148. [Epub ahead of print] Review.

PubMed ID: 
28972279

Corneal Dystrophy, Posterior Polymorphous 3

Clinical Characteristics
Ocular Features: 

This is a genetically and clinically heterogeneous type of corneal dystrophy.  Endothelial metaplasia seems to play a role as these cells acquire some characteristics of epithelial cells.  The posterior cornea has guttae and lesions of various sizes surrounded by a grayish halo.  These may become confluent and lead to stromal edema extending into the epithelium.  The thickness of the Descemet membrane is highly variable and a retrocorneal membrane may be present.  Onset is variable as some infants will have corneal edema whereas many, if not most, adults are asymptomatic.  The condition in severely affected children may resemble congenital hereditary corneal dystrophy.

Systemic Features: 

No consistent systemic abnormalities have been reported.  However, some patients have been reported with inguinal hernias, hydroceles, and possible bone abnormalities suggesting that the ZEB1 mutation may have extraocular effects as well.

Genetics

This is an autosomal dominant disorder caused by a mutation in the ZEB1 gene (10p11.2).  Mutations in the same gene have recently been found in some cases with late-onset Fuchs endothelial dystrophy.

For other forms of posterior polymorphous dystrophy see PPCD1 (122000) and PPCD2 (609140).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Most patients do well and require no treatment.  Corneal transplantation may be required for the more severe cases but, as in many dystrophies, the lesions tend to recur in the graft.

References
Article Title: 

Mutations in TCF8 cause posterior polymorphous corneal dystrophy and ectopic expression of COL4A3 by corneal endothelial cells

Krafchak CM, Pawar H, Moroi SE, Sugar A, Lichter PR, Mackey DA, Mian S, Nairus T, Elner V, Schteingart MT, Downs CA, Kijek TG, Johnson JM, Trager EH, Rozsa FW, Mandal MN, Epstein MP, Vollrath D, Ayyagari R, Boehnke M, Richards JE. Mutations in TCF8 cause posterior polymorphous corneal dystrophy and ectopic expression of COL4A3 by corneal endothelial cells. Am J Hum Genet. 2005 Nov;77(5):694-708.

PubMed ID: 
165384081

Corneal Dystrophy, Posterior Polymorphous 2

Clinical Characteristics
Ocular Features: 

This is primarily a disease of the posterior cornea although the secondary edema may extend to the epithelium.  The disease may be apparent at birth or shortly thereafter by the presence of excrescences or nodules in the endothelial layer with stromal edema.  Descemet membrane can be highly irregular in thickness.  The endothelial cells in PPCD may acquire some characteristics of epithelial cells.

Systemic Features: 

No systemic abnormalities have been reported for PPCD2.

Genetics

This is a rare autosomal dominant disorder and few families have been reported.  The mutant gene, COL8A2 (1p34.3-p32.3) is the same as that causing early onset Fuchs endothelial dystrophy (136800) and both dystrophies have been described in the same family.   The mutation alters the synthesis of alpha 2 chains, part of type VIII collagen, a major component of the Descemet membrance.

For other forms of posterior polymorphous corneal dystrophy, see PPCD3 (609141), and PPPCD1 (122000).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Corneal transplantation may be indicated by the third decade or later.  The corneal lesions tend to recur, however.

References
Article Title: 

Missense mutations in COL8A2, the gene encoding the alpha2 chain of type VIII collagen, cause two forms of corneal endothelial dystrophy

Biswas S, Munier FL, Yardley J, Hart-Holden N, Perveen R, Cousin P, Sutphin JE, Noble B, Batterbury M, Kielty C, Hackett A, Bonshek R, Ridgway A, McLeod D, Sheffield VC, Stone EM, Schorderet DF, Black GC. Missense mutations in COL8A2, the gene encoding the alpha2 chain of type VIII collagen, cause two forms of corneal endothelial dystrophy. Hum Mol Genet. 2001 Oct 1;10(21):2415-23.

PubMed ID: 
11689488

Corneal Dystrophy, Posterior Polymorphous 1

Clinical Characteristics
Ocular Features: 

This form of corneal dystrophy is often asymptomatic but some patients experience endothelial decompensation and corneal edema, which may even be seen soon after birth. The edema may extend into the epithelium.  The basic mechanism entails metaplasia of endothelial cells which seem to acquire some characteristics of epithelial cells.  Posterior corneal lesions of variable morphology appear in various patterns and are often surrounded by grayish halos.  When these become confluent the corneal edema is more severe and may resemble a congenital endothelial dystrophy.  The endothelial cell count is often low.  The Descemet layer also becomes abnormal.  The posterior border of the cornea appears nodular and grayish in color, often in a geographic pattern.  Surprisingly, endothelial function often is maintained and patients may remain asymptomatic for many years.

Some patients have features of anterior chamber dysgenesis with iris anomalies, anterior synechiae, and glaucoma.  It is also sometimes confused with EDICT syndrome (614303).

Systemic Features: 

No systemic disease is associated with this disorder.

Genetics

This is a genetically heterogeneous autosomal dominant disorder caused by several mutations including the promotor of OVOL2 at 20p11.23 responsible for PPCD1 described here.  Another locus for this disease has been mapped to 20q11, the same locus responsible for congenital hereditary corneal edema 1 (CHED1) and it is possible that these are allelic or clinical variants of the same mutation.  The latter is made more likely by the fact that both disorders have been found in relatives.  OMIM has combined the entities CHED1 and PPCD1 as a single disorder (122000).

For other forms of posterior polymorphous corneal dystrophy see, PPCD2 (609140) and PPCD3 (609141).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Few patients require treatment since the endothelial changes are frequently stable. Among those that do undergo corneal transplantation, the changes often recur in the donor button.

References
Article Title: 

Waardenburg Syndrome, Type 2

Clinical Characteristics
Ocular Features: 

This type of Waardenburg syndrome is distinguished from type 1 and 3 (193500) by the fact that it is caused by mutations in a different gene and in the absence of dystopia canthorum.  It has been claimed that hearing loss is more common and severe in type 2 (77%) as is heterochromia of the iris (47%) while skin and hair hypopigmentation are less common.

Families with WS2A may have the full spectrum of eye findings seen in X-linked ocular albinism I (300500) including decreased acuity, photophobia, nystagmus, translucent irides, hypermetropia, and albinotic fundi with foveal hypoplasia.  Indeed, such families have been considered to have 'albinism, ocular, with sensorineural deafness' (103470).  Such families might be considered to have an autosomal dominant form of ocular albinism.

Systemic Features: 

Congenital sensorineural hearing loss is an important and common feature.  Also characteristic are the white forelock, poliosis, and hypopigmented skin patches.

Genetics

Waardenburg syndrome is an excellent example of genetic heterogeneity as types 1 and 3 (193500, 148820), 2 (193510), and 4 (277580) are all caused by mutations in different genes. 

Type 2 described here is a genetically heterogeneous autosomal dominant disorder.  WS2A is caused by a mutation in MITF (microphthalmia-associated transcription factor) (3p14.1-p12.3).  This is the same disorder described as 'Albinism, ocular, with sensorineural deafness' in OMIM (103470)  (WS2-OA).

A locus at 1p21-p13.3 is associated with WS2B (600193) and WS2C (606662) maps to 8p23.  In addition, homozygous SNAI2 mutations at 8q11 have been found in several patients with WS2D (608890) suggesting autosomal recessive inheritance but the normal parents were not studied.  Recent evidence suggests that SOX10 mutations can also play a role via MITF promoter modulation (WS2E) (611584).

Type 4 is also the result of mutations in at last three genes.

A child has been reported who was doubly heterozygous for mutations involving both MITF and PAX3.  Hypopigmentation in the scalp hair, eyebrows and eyelashes was more severe than usually seen in patients with single mutations.  In addition the face showed marked patchy pigmentation.  One parent contributed the MITF mutation and the other added the mutation in PAX3.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No ocular treatment is necessary but assistive hearing devices can be helpful.

References
Article Title: 

Waardenburg Syndrome, Type 4

Clinical Characteristics
Ocular Features: 

The skin and ocular pigmentary changes and the sensorineural hearing loss in type 4 Waardenburg syndrome resembles that of other types.  Patients, however, usually lack synophrys and dystopia canthorum.

Systemic Features: 

Type 4 Waardenburg syndrome is largely similar to other types except that many patients also have Hirschsprung disease.

Genetics

Both autosomal dominant and recessive inheritance have been reported for type 4 Waardenburg syndrome.  Both heterozygous and homozygous mutations in the EDNRB (endothelin-B receptor) gene (13q22) occur in patients.  The aganglionic megacolon feature may be dose sensitive since homozygotes have been reported to have a 74% chance of developing Hirschsprung disease while only 21% of heterozygotes do so.

Types 4A (277580) and 4B (613265) are both caused by mutations in the EDNRB gene, and type 4C (613266) results from a mutation in the SOX10 gene.  Waardenburg syndrome WS2E is allelic to type 4C.  This is an example of genetic heterogeneity both within the main types and within the subtypes.

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

No ocular treatment is necessary but assistive hearing devices can be beneficial.

References
Article Title: 

Waardenburg syndrome

Read AP, Newton VE. Waardenburg syndrome. J Med Genet. 1997 Aug;34(8):656-65. Review.

PubMed ID: 
9279758

Corneal Dystrophy, Avellino Type

Clinical Characteristics
Ocular Features: 

There is little to support the designation of a corneal dystrophy as 'Avellino type' but it is included in this database because it is entrenched in the literature.  It has features of both lattice dystrophy, type I, and granular dystrophy type I, which might be expected since all of these result from mutations in the same gene, TGFBI on chromosome 5.  Not surprisingly, reported cases have clinical and histological features of both lattice and granular dystrophy and hence are labeled as having combined granular-lattice corneal dystrophy.  There is considerable variation of the nature and quantity of the stromal deposits both within and among families, a common characteristic of autosomal dominant disorders.  Even though clinical evidence may suggest primarily lattice or granular dystrophy, histological studies can reveal changes characteristic of both.

Early cases could be traced to the Avellino region of Italy from which the title was derived but more recent reports have described families from around the world.

Systemic Features: 

No systemic disease is associated with this disorder.

Genetics

Mutations in the TGFBI (5q31) have been found in this so-called combined dystrophy.   Autosomal dominant transmission is evident from familial cases.  Mutations in the same gene also cause Thiel-Behnke (602082), Reis-Bucklers (608470), granular (Groenouw) type I (121900), lattice type I (122200) and epithelial basement membrane dystrophy (121820).  The combined features of lattice and granular dystrophies in the same corneas resulting from mutations in the same gene calls into question the value of relying solely on clinical and histological evidence to classify disease.  Modern genotyping now enables greater accuracy in the nosology and already the Cornea Society has incorporated this information in its recent reclassification of these dystrophies (Cornea Society IC3D Corneal Dystrophies(c)). 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Penetrating keratoplasty can improve vision at least temporarily but deposits tend to recur.  LASIK has been reported to exacerbate the number and density of the opacities.  Patients treated with PRK may do better and can retain corneal clarity for a decade or more.

References
Article Title: 

Avellino corneal dystrophy after LASIK

Jun RM, Tchah H, Kim TI, Stulting RD, Jung SE, Seo KY, Lee DH, Kim EK. Avellino corneal dystrophy after LASIK. Ophthalmology. 2004 Mar;111(3):463-8.

PubMed ID: 
15019320

Pages

Subscribe to RSS - autosomal dominant