autosomal dominant

Optic Atrophy 5

Clinical Characteristics
Ocular Features: 

The phenotype in OPA5 has some similarities to that of OPA1 (125250, 165500).  Onset occurs as early as the first decade of life in some families but may not be evident until the third decade in other families.  Visual acuity decreases slowly and color vision is impaired, more so in older patients.  Temporal pallor of the optic nerve is usually present and central scotomas with narrowing of the visual fields can be plotted.  The nerve fiber layer is reduced in thickness.  VEP defects likewise are variable and generally more severe in later stages.  No ERG abnormalities have been reported.  This is a bilateral disease with nearly 100% penetrance.

Systemic Features: 

No systemic abnormalities are present.

Genetics

Heterozygous mutations in the DNM1L gene (12p11.21) are found in patients with OPA5.  Morphologic changes found in mitochondria have been interpreted as consistent with an impairment in fission.  Two families who had been previously reported to have mutations at the 22q12.1 locus were found to have the DNM1L mutation.

Like several other forms of heritable optic atrophy, OPA1 (125250, 165500) and OPA4 (605293), this is an autosomal dominant disorder.  

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment of the optic atrophy is available but low vision aids can be helpful to utilize remaining vision.

References
Article Title: 

Mutations in DNM1L, as in OPA1, result in dominant optic atrophy despite opposite effects on mitochondrial fusion and fission

Gerber S, Charif M, Chevrollier A, Chaumette T, Angebault C, Kane MS, Paris A, Alban J, Quiles M, Delettre C, Bonneau D, Procaccio V, Amati-Bonneau P, Reynier P, Leruez S, Calmon R, Boddaert N, Funalot B, Rio M, Bouccara D, Meunier I, Sesaki H, Kaplan J, Hamel CP, Rozet JM, Lenaers G. Mutations in DNM1L, as in OPA1, result in dominant optic atrophy despite opposite effects on mitochondrial fusion and fission. Brain. 2017 Oct 1;140(10):2586-2596.

PubMed ID: 
28969390

Smith-Magenis Syndrome

Clinical Characteristics
Ocular Features: 

Ocular abnormalities have been found in the majority of patients.  Microcornea, myopia, strabismus and iris dysplasia are the most common.  Rare patients have iris colobomas or correctopia.  The eyes appear deep-set and lid fissures are upward slanting.

Systemic Features: 

The facial features are considered to be distinctive, characterized by a broad, square face, prominent forehead, broad nasal bridge, and midface hypoplasia.  These and other features appear more pronounced with age as in the size of the jaw which is underdeveloped in infancy and eventually becomes prognathic.  Most patients have developmental delays, speech and motor deficits, cognitive impairments and behavioral abnormalities.  Hypotonia, hyporeflexia, failure to thrive, lethargy, and feeding difficulties are common in infants.  Older individuals have REM sleep disturbances with self-destructive behaviors, aggression, inattention, hyperactivity, and impulsivity.  Short stature, hypodontia, brachydactyly, hearing loss, laryngeal anomalies, and peripheral neuropathy are common. Seizures are uncommon.

The behavioral profile of this syndrome can resemble that of autism spectrum disorders although symptoms of compulsivity are more mild.

A related developmental disorder known as Potacki-Lupski syndrome (610883) involving the same locus on chromosome 17 has a similar behavioral profile.  Ocular and systemic malformations may be less severe though.

Genetics

Most patients (90%) with the Smith-Magenis syndrome have interstitial deletions in the short arm of chromosome 17 (17p11.2).  However, it is included here since a few have heterozygous molecular mutations in the RAI1 gene which is located in this region.  While there is considerable phenotypic overlap, individuals with chromosomal deletions have the more severe phenotype as might be expected.  For example, those with RAI1 mutations tend to be obese and are less likely to exhibit short stature, cardiac anomalies, hypotonia, hearing loss and motor delays than seen in patients with a deletion in chromosome 17.  However, the phenotype is highly variable among patients with deletions depending upon the nature and size of the deletion.

The retinoic acid induced 1 gene (RAI1) codes for a transcription factor whose activity is reduced by mutations within it.

Familial cases are rare and reproductive fitness is virtually zero.  If parental chromosomes are normal, the risk for recurrence in sibs is less than 1%.  Males and females are equally affected.

In Potocki-Lupski syndrome (610883) there is duplication of the 17p11.2 microdeletion as the reciprocal recombination product of the SMS deletion.   

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Medical monitoring, psychotropic medications and behavioral therapies are all useful.  Special education and vocational training may be helpful for those less severely affected.

References
Article Title: 

Characterization of Potocki-Lupski syndrome (dup(17)(p11.2p11.2)) and

Potocki L, Bi W, Treadwell-Deering D, Carvalho CM, Eifert A, Friedman EM,
Glaze D, Krull K, Lee JA, Lewis RA, Mendoza-Londono R, Robbins-Furman P, Shaw C,
Shi X, Weissenberger G, Withers M, Yatsenko SA, Zackai EH, Stankiewicz P, Lupski
JR. Characterization of Potocki-Lupski syndrome (dup(17)(p11.2p11.2)) and
delineation of a dosage-sensitive critical interval that can convey an autism
phenotype
. Am J Hum Genet. 2007 Apr;80(4):633-49.

PubMed ID: 
17357070

Optic Atrophy 4

Clinical Characteristics
Ocular Features: 

This form of optic atrophy is clinically heterogeneous similar to others.  It is less common than OPA1 (165500).  Visual acuity ranges from normal to 6/200.  Individuals that carry the mutation usually have some degree of bilateral optic disc pallor and dyschromatopsia even in the presence of 20/20 acuity.  This profile is present in the first decade of life in some patients with most experiencing acute or subacute loss of vision between the ages of 18 and 35 years.  Vision loss is progressive in the majority of patients but unpredictable with some experiencing rapid decline whereas others have only a slow decline.  Age and visual acuity are not strongly correlated but in general older individuals have worse acuity.

Systemic Features: 

There are no systemic findings in OPA4.

Genetics

This is an autosomal dominant disorder secondary to mutations in the OPA4 gene at 18q12.2-q12.3.

Other autosomal dominant optic atrophy disorders include OPA1 (125250, 165500) and OPA5 (610708).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment is available for hereditary optic atrophy but low vision aids can be helpful for visual assistance.

References
Article Title: 

Optic Atrophy 1

Clinical Characteristics
Ocular Features: 

This form of bilateral optic atrophy may have its onset in early childhood with optic disc pallor, loss of acuity, loss of color vision, and centrocecal scotomas.  However, it is often not manifest until the second decade of life.  Moderate to severe temporal or diffuse pallor can be seen.  The optic disc has been described as normal in 29% of documented carriers and 20% have no visual field defect.  Pallor of the complete disc is found in only 10%.  Consequently, the phenotype is variable, with some individuals having minimal symptoms while others have severe vision loss.  The disease is progressive in some but not all families.  The median visual acutity is 20/70 but ranges from normal to hand motions.  

Histologic studies show atrophy of ganglion cells in the retina and loss of myelin sheaths in the optic nerve.   VEPs are absent or subnormal.  Optical coherence tomography reveals a significant reduction in retinal nerve fiber layer and ganglion cell layer thickness, most marked in the temporal quadrants.

Systemic Features: 

OPA1 is generally not associated with systemic disease.  However, some have sensorineural deafness, ataxia, ptosis, and ophthalmoplegia.  Families with both early and late onset have been reported.  Some (~20%) individuals have a myopathy as well.

Genetics

This is an autosomal dominant disorder resulting from mutations in a nuclear gene, OPA1 (3q28-q29).  The gene product is attached to the mitochondrial cristae of the inner membrane and metabolic studies have implicated the oxidative phosphorylation pathway which seems to be defective with reduced efficiency of ATP synthesis.  Penetrance approaches 90% but this is, of course, age dependent to some extent.

An allelic disorder (125250) is associated with sensorineural deafness, ataxia, and ophthalmoplegia but its uniqueness remains to be established since the same mutations in OPA1 have been found in both conditions.

Other autosomal dominant optic atrophy disorders include OPA5 (610708) and OPA4 (605293).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No effective treatment is available.

References
Article Title: 

OPA1 in multiple mitochondrial DNA deletion disorders

Stewart JD, Hudson G, Yu-Wai-Man P, Blakeley EL, He L, Horvath R, Maddison P, Wright A, Griffiths PG, Turnbull DM, Taylor RW, Chinnery PF. OPA1 in multiple mitochondrial DNA deletion disorders. Neurology. 2008 Nov 25;71(22):1829-31.

PubMed ID: 
19029523

Cataracts, Congenital, Posterior Polar

Clinical Characteristics
Ocular Features: 

Posterior polar cataracts are likely to occur congenitally but there is often a delay in detection until childhood or even adolescence.  Many patients with a late diagnosis develop nystagmus and strabismus.  Opacification usually begins bilaterally as disc-shaped plaques of opacification in the posterior polar region and progresses relatively rapidly to complete opacification.  Some patients require lens surgery in the first year of life while others not until they are young adults.

Systemic Features: 

This type of congenital cataract is not associated with systemic symptoms.

Genetics

Autosomal dominant posterior polar cataracts may result from mutations in the EPHA2 gene located at 1pter-p36.1.  Interestingly, an area with a likely locus adjacent to but outside the coding region of this gene has been associated with age-related cataracts.

This type of lens opacity may be allelic to Volkmann cataract (115665).

Other forms of autosomal dominantly inherited, congenital, progressive lens opacities include congenital cerulean (115660, 601547, 608983, 610202), Coppock-like (604307), and lamellar (116800) cataracts. Due to clinical heterogeneity, it is not always possible to classify specific families based on the appearance and natural history of the lens opacities alone.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Serial monitoring and timely surgery are important for the prevention of amblyopia, strabismus, and nystagmus.

References
Article Title: 

Cataracts, Congenital Cerulean

Clinical Characteristics
Ocular Features: 

Tiny lens opacities of blue or white color generally appear from birth through 18 and 24 months of age but may not be diagnosed until adulthood.  They first appear at the outer edge of the fetal lens nucleus or in more superficial cortical layers depending on the type.  Infants may be visually impaired from birth and develop nystagmus and amblyopia.  The opacities are usually bilateral and progressive.  Lens removal may be required in early infancy but often not until the 2nd to 4th decades.

Systemic Features: 

No systemic abnormalities are associated with cerulean cataracts.

Genetics

Lens opacities can, of course, be associated with chromosomal aberrations, developmental conditions, intrauterine infections, and metabolic errors as well as single gene mutations.   About 23% are familial but even among these there is considerable genetic and clinical heterogeneity that confounds the nosology despite notable recent progress in genotyping.  Due to clinical heterogeneity, it is not always possible to classify specific families based on the appearance and natural history of the lens opacities alone.

Cerulean cataracts of congenital or childhood onset can be due to mutations in genes that encode various lens crystallins.  Type 1 (CCA1; 115660) or 'blue dot' cerulean cataracts result from mutations in a gene located at 17q24 but its identity is as yet unknown. Intriguingly, it is located in the same chromosomal vicinity as the galactokinase deficiency gene (GALK1).  The lens opacities follow an autosomal dominant pattern of transmission. The mutation, however, does not appear to involve a gene that codes for any of the major structural proteins of the lens.

Type 2 (CCA2; 601547) results from mutations in the CRYBB2 gene (22q11.2-q12.2) encoding the beta-B2-crystallin protein.  Inheritance is autosomal dominant.

Type 3 (CCA3; 608983) is caused by mutations in CRYGD (2q33-q35) coding gamma-D-crystallin.  It has been reported in a single family in which it seemed to appear earlier and progress more rapidly than other types.  The pedigree pattern was consistent with autosomal dominant inheritance.  Mutations in the same gene also cause an allelic disorder designated nonnuclear polymorphic congenital cataracts or PCC (601286), which may simply be clinical heterogeneity of the same condition.

Type 4 (CCA4; 610202) is due to mutations in the MAF gene (16q22-q23) and is also inherited in an autosomal dominant pattern.  Lens opacities have a later, more juvenile onset and the lens opacities are located in a lamellar distribution in superficial cortical layers.  These are progressive and often result in posterior subcapsular opacification that requires lens extraction in adults.

Type 5 (CCA5; 614422) is the result of a mutation in a locus at 12q24 and is dominantly inherited.  The opacities are located throughout the lens but are most numerous in the cortex.   They are most commonly diagnosed in the second decade of life and lens extractions are required a decade or so later.

Other forms of autosomal dominantly inherited, congenital, progressive lens opacities include Volkmann type (115665), Coppock-like (604307), lamellar (116800), and congenital posterior polar (116600) cataracts. 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment is known to prevent the opacities but serial evaluations and cataract surgery are required to prevent amblyopia as the opacities progress.

References
Article Title: 

Conversion and compensatory evolution of the gamma-crystallin genes and identification of a cataractogenic mutation that reverses the sequence of the human CRYGD gene to an ancestral state

Plotnikova OV, Kondrashov FA, Vlasov PK, Grigorenko AP, Ginter EK, Rogaev EI. Conversion and compensatory evolution of the gamma-crystallin genes and identification of a cataractogenic mutation that reverses the sequence of the human CRYGD gene to an ancestral state. Am J Hum Genet. 2007 Jul;81(1):32-43.

PubMed ID: 
17564961

Familial Exudative Vitreoretinopathy, EVR4

Clinical Characteristics
Ocular Features: 

The basis for many of the ocular complications likely begins with incomplete development of the retinal vasculature.  Resulting retinal ischemia leads to neovascularization, vitreous hemorrhage and traction, and retinal folds with some 20% going on to develop rhegmatogenous or traction detachments.  There is, however, considerable clinical variability, even within families, with some infants blind from birth whereas some (41%) adults have only areas of remaining avascularity or evidence of macular dragging.  In fact, some affected individuals are asymptomatic and diagnosed only as part of extensive family studies.  Intraretinal lipid is often seen.  Considerable asymmetry in the two eyes is common. Secondary cataracts often occur and phthisis bulbi results in some patients.  The clinical picture is sometimes confused with retinopathy of prematurity.

Systemic Features: 

Osteoporosis and endosteal hyperostosis has been reported among individuals with mutations in LRP5.

Genetics

The EVR4 form of FEVR results from mutations in the LRP5 gene (11q13.4) and the clinical features may be seen in both heterozygotes and homozygotes.  Thus the disease is inherited in both autosomal dominant and autosomal recessive patterns.  The osteoporosis-pseudoglioma syndrome (259770) is allelic to this condition.

Mutations in the FZD4 gene cause a phenotypically indistinguishable condition (EVR1; 133780) but is always inherited in an autosomal dominant pattern.  There is also an X-linked form (EVR2) caused by a mutation in NDP (305390).

Retinopathy of prematurity can be called a phenocopy of FEVR.

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

Retinal, vitreal, and cataract surgery are indicated in appropriate cases.

References
Article Title: 

Familial Exudative Vitreoretinopathy, EVR1

Clinical Characteristics
Ocular Features: 

The basis for many of the ocular complications likely begins with incomplete development of the retinal vasculature.  Resulting retinal ischemia leads to neovascularization, vitreous hemorrhage and traction, and retinal folds, with some 20% going on to develop rhegmatogenous or traction detachments.  There is, however, considerable clinical variability, even within families, with some infants blind from birth whereas some (41%) adults have only areas of remaining avascularity or evidence of macular dragging.  In fact, some affected individuals are asymptomatic and diagnosed only as part of extensive family studies.  Intraretinal lipid is often seen.  Considerable asymmetry in the two eyes is common.  Secondary cataracts often occur and phthisis bulbi results in some patients.  The clinical picture is sometimes confused with retinopathy of prematurity.

Systemic Features: 

No systemic features have been associated with EVR1 disease.

Genetics

Familial exudative vitreoretinopathy is the name given to a clinically and genetically heterogeneous group of disorders caused by mutations in several genes.  Both autosomal dominant (EVR1 described here) plus EVR4 (601813) and X-linked inheritance (EVR2; 305390) have been reported with the former much more common.  Similarities in the clinical presentation of Congenital Nonattachment of the Retina may cause diagnotic confusion. 

Mutations in the frizzled-4 gene FZD4 (11q14-q21) have been associated with the EVR1 form of this disease inherited in an autosomal dominant pattern.  Retinopathy of prematurity can be called a phenocopy of FEVR.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Retinal, vitreal, and cataract surgery are indicated in appropriate cases.

References
Article Title: 

Flecked Retina Syndromes

Clinical Characteristics
Ocular Features: 

There exist a considerable number of disorders often classified under the heading of 'flecked retina' syndrome.  Prior to the modern genomic period, distinctions among them were based on the clinical picture, functional abnormalities, and electrophysiological studies.  The nosology is becoming clearer as more individuals are genotyped and we can expect further discrimination of these disorders in the near future.

White or yellow discrete dots are found throughout the fundus.  These are most dense in the midperiphery RPE and the macula is generally not involved.  This is most common in patients with fundus albipunctatus who have a nonprogressive disease.  Stationary night blindness is the predominant symptom.  However, patients with mutations in RDH5 may have more serious cone involvement and progressive macular disease.  Visual acuity varies from near normal to severe loss.  Photopic ERGs may be normal but only low scotopic responses can be recorded in such patients.  Cone dysfunction is more severe in older patients.

Systemic Features: 

No systemic disease is associated with these syndromes.

Genetics

These disorders are sometimes grouped into the category of 'flecked retina disease'.

Autosomal dominant inheritance is typical for fundus albipunctatus (136880) resulting from mutations in the RDS (PRPH2) gene (6p21.1-cen).

Autosomal recessive fundus albipunctatus (136880) is caused by mutations in RDH5 (12q13-q14) and sometimes in RLBP1 (15q26.1).

Retinitis punctata albescens (136880) and fundus albipunctatus (136880) may both be caused by mutations in RLBP1 (15q26.1).  In a consanguineous family in which younger individuals (aged 3-20 years) had signs of fundus albipunctatis, older individuals in the fourth and fifth decades of life had features of retinitis punctata albescens (136880).  Homozygous mutations in RLBP1 were found in all individuals.  Homozygous mutations in the same gene are also responsible for Bothnia type retinal dystrophy (607475) and for the Newfoundland type of retinal dystrophy (607476).

Familial Benign Fleck Retina (228980) is characterized by a normal ERG and normal vision. The macula is spared from the white/yellow flecks located behind retinal vessels. Autofluorescence is present and the fluorescein angiogram shows irregular hypofluorescence.  Nothing is known about the mutation but the clinical condition is inherited in an autosomal recessive pattern.

Some group Stargardt disease (248200), fleck retina of Kandori (228990),  juvenile retinoschisis (312700), and familial benign fleck retina (228980) as well into the category of 'flecked retina disease'.

Other disorders in which retinal flecks may be seen are: spastic paraplegia 15 (270700), hyperoxaluria (259900), Alport syndrome (301050), Bietti-crystalline-corneoretinal-dystrophy (210370 ), Sjogren-Larsson syndrome (270200), pantothenate kinase-associated neurodegeneration (234200), Leber congenital amaurosis (204000), and Bardet-Biedl syndrome (209900),

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

Low vision aids may be useful when macular disease is present.  A recent report describes improvement in peripheral fields and rod function following administration of high-dose oral 9-cis-beta-carotene.

References
Article Title: 

Flecked-retina syndromes

Walia S, Fishman GA, Kapur R. Flecked-retina syndromes. Ophthalmic Genet. 2009 Jun;30(2):69-75..

PubMed ID: 
19373677

Novel mutations in the cellular retinaldehyde-binding protein gene (RLBP1) associated with retinitis punctata albescens: evidence of interfamilial genetic heterogeneity and fundus changes in heterozygotes

Fishman GA, Roberts MF, Derlacki DJ, Grimsby JL, Yamamoto H, Sharon D, Nishiguchi KM, Dryja TP. Novel mutations in the cellular retinaldehyde-binding protein gene (RLBP1) associated with retinitis punctata albescens: evidence of interfamilial genetic heterogeneity and fundus changes in heterozygotes. Arch Ophthalmol. 2004 Jan;122(1):70-5.

PubMed ID: 
14718298

Benign fleck retina

Isaacs TW, McAllister IL, Wade MS. Benign fleck retina. Br J Ophthalmol. 1996 Mar;80(3):267-8. PubMed PMID: 8703867

PubMed ID: 
8703867

Night Blindness, Congenital Stationary, CSNBAD3

Clinical Characteristics
Ocular Features: 

Night blindness is a feature of many pigmentary and other retinal disorders, most of which are progressive.  However, there is also a group of genetically heterogeneous disorders, with generally stable scotopic defects and without RPE changes, known as congenital stationary night blindness (CSNB).  At least 10 mutant genes are responsible with phenotypes so similar that genotyping is usually necessary to distinguish them.  All are caused by defects in visual signal transduction within rod photoreceptors or in defective photoreceptor-to-bipolar cell signaling with common ERG findings of reduced or absent b-waves and generally normal a-waves.  However, the photopic ERG can be abnormal to some degree as well and visual acuity may be subnormal.  In the pregenomic era, subtleties of ERG responses were frequently used in an attempt to distinguish different forms of CSNB.  Genotyping now enables classification with unprecedented precision.

Congenital stationary night blindness disorders are primarily rod dystrophies presenting early with symptoms of nightblindness and relative sparing of central vision.  Nystagmus and photophobia are usually not features.  Dyschromatopsia and loss of central acuity can develop later as the cones eventually become dysfunctional as well but these symptoms are much less severe than those seen in cone-rod dystrophies.  The amount of pigmentary retinopathy is highly variable.

This disorder (CSNBAD3), one of three autosomal dominant CSNB conditions, is known primarily from  a single large family in Southern France.  All affected individuals descended from Jean Nougaret from which the eponym is derived.  The published pedigree by F. Cunier in 1838 is probably the first illustrating autosomal dominant inheritance of a human disease.  Rod a-waves are completely absent suggesting complete lack of rod function.  Night vision in dim conditions was reduced but not with bright backgrounds.  Daytime vision is normal as is color vision.  Rare patients have peripheral pigmentary changes with visual field restriction.

Systemic Features: 

No systemic disease is associated with congenital stationary night blindness.

Genetics

CSNBAD3, or type AD3, is one of three congenital nightblindness disorders with autosomal dominant inheritance.  It results from mutations in the GNAT1 gene (3p21) gene encoding a subunit of rod transducin which couples rhodopsin as part of the phototransduction cascade.

A consanguineous Pakistani family with 4 affected children in a pedigree suggestive of autosomal recessive inheritance has been reported (CSNB1G).  All individuals with congenital nightblindness were homozygous for a missense mutation in GNAT1 while unaffected persons were heterozygous (616389).

Other autosomal dominant CSNB disorders are: CSNBAD2 (163500) and CSNBAD1 (610445).  Three CSNB disorders are transmitted in an autosomal recessive pattern and two as X-linked recessives.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment beyond correction of the refractive error is available but tinted lenses are sometimes used to enhance vision.

References
Article Title: 

Pages

Subscribe to RSS - autosomal dominant