mental retardation

Cornelia de Lange Syndrome

Clinical Characteristics
Ocular Features: 

Many patients have few ocular findings beyond the usual synophyrs, a highly arched brow with hypertrichosis, and long eyelashes.  Synophrys is often prominent.  However, some also have significant ptosis, nystagmus, and high refractive errors.  Optic pallor and a poor macular reflex have also been reported.

Systemic Features: 

The facial features may be distinctive with low anterior hairline, anteverted nares, maxillary prognathism, long philtrum, crescent-shaped mouth and, of course, the bushy eyebrows and long lashes (in 98%).  Mental and growth retardation are common while many patients have features of the autism spectrum and tend to avoid social interactions.  The lips appear thin, the mouth is crescent-shaped, the head is often small, the teeth are widely spaced, and the ears are low-set.  The hands are often deformed with a proximally positioned thumb and metacarpophalangeal deformities.  It is stated that the middle phalanx of the index finger is always hypoplastic.  Other limb abnormalities of both upper (95%) and lower extremities are common.  Urinary tract abnormalities have been found in 41% of patients.  Middle ear effusions often lead to conductive hearing loss but 80% of patients have a sensorineural hearing deficit.

Genetics

This disorder is caused by mutations in genes encoding components of the cohesion complex.  Most cases occur sporadically but numerous familial cases suggest autosomal dominant inheritance. However, since at least three genes code for components of the cohesion complex including one located on the X-chromosome (610759), familial cases reported earlier without genotyping have created some confusion.  Hence, even autosomal recessive inheritance has been suggested in some families.  Genetic counseling should be family-specific based on the genotype and family pattern.

About 50% of cases result from mutations in the NIPBL gene (122470; 5p13.1) but less than 1% have an affected parent and the recurrence risk for sibs is similar.  The X-linked form of CDLS (300590; Xp11.22-p11.21) is caused by a mutation in the SMC1A gene, and a mild form (610759) results from mutations in the SMC3 gene (10q25).  Mutations in RAD21 (8q24) have been found in patients with milder disease and atypical presentations (614701).

A CDLS phenotype can also result from a specific duplication of a 3q 26-27 band.

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

No genetic treatment is available.

References
Article Title: 

Axenfeld-Rieger Anomaly, Plus

Clinical Characteristics
Ocular Features: 

This rare disorder has ocular features of Rieger anomaly with significant systemic features but different than those found in the Axenfeld-Rieger syndrome.  The iris is hypoplastic and the pupil may be distorted secondary to anterior synechiae.  Schwalbe line is prominent.  There are no reports of glaucoma but this may be biased by the small number of patients reported.  Hypertelorism, prominent eyes and strabismus have been described.  Several patients have had absence of the extraocular muscles.

Systemic Features: 

Hypotonia, lax joints, midface hypoplasia, prominent forehead, and short stature have been described.  Some, but not all patients have a degree of psychomotor retardation.  Mild hearing impairment has been reported.

Genetics

This is likely an autosomal dominant disorder in which mutations of the PITX2 and FOXC1 genes common in Axenfeld-Rieger syndrome have been ruled out.  No locus has been identified.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment is available.

References
Article Title: 

Rhizomelic Chondrodysplasia Punctata

Clinical Characteristics
Ocular Features: 

Congenital cataracts are the outstanding ocular feature of this syndrome and are present in over 70% of patients.  They are usually bilateral and symmetrical and may not be present for several months after birth.

Systemic Features: 

The name of this disorder comes from the punctate calcification seen in cartilage.   The vertebrae have coronal clefting.  The cartilage abnormalities result in defective bone growth with severe growth retardation, short stature, and joint contractures.  Many infants die during the neonatal period and few survive beyond the first decade of life. However, milder forms have been reported. The skin can be ichthyotic and severe mental retardation is often accompanied by seizures.  Red cells are deficient in plasmalogens while phytanic acid and very long chain fatty acids accumulate in the plasma, a biochemical profile characteristic of RCDP1.

Other types of chondrodysplasia punctata also exist (RCDP2 and RCDP3). The X-linked recessive (CDPX1; 302950), autosomal dominant tibia-metacarpal (118651), and humero-metacarpal types are not associated with cataracts.

A phenocopy sometimes results from maternal ingestion of dicoumarol in early pregnancy.

Genetics

This rare autosomal recessive condition results from mutations in the PEX7 gene (6q22-q24) causing a peroxisomal biogenesis disorder.  Some clinical features overlap with those of Zellweger syndrome (214100) and infantile Refsum disease (266510), also peroxisomal biogenesis disorders. 

Mutations in the same gene are responsible for adult Refsum disease-2 (266500).  The latter, however, has other neurological symptoms as well as clinical features of retinitis pigmentosa with night blindness and restricted visual fields.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available beyond supportive measures. Cataract removal may improve vision but the poor prognosis for longevity requires caution be used.

References
Article Title: 

Baller-Gerold Syndrome

Clinical Characteristics
Ocular Features: 

The ocular features are a rather minor part of this syndrome and are found in less than a third of patients.  These primarily involve lids and adnexae with telecanthus, downslanting lid fissures, and epicanthal folds.  Some individuals have nystagmus while strabismus, blue sclerae, and ectropion have also been reported.

Systemic Features: 

The cardinal features of this syndrome are craniosynostosis and radial defects.  However, a large number of variable defects such as imperforate or anteriorly placed anus, rectovaginal fistula, absent thumbs, polydactyly, and mental retardation may also be present.  The radius may be completely absent or abnormally formed and occasionally the ulnar bone is involved as well.  Some patients have a conductive hearing loss.

Genetics

This syndrome is caused by a mutation in the RECQL4 gene at 8q24.3 and seems to be an autosomal recessive disorder.  Its syndromal status as a unique syndrome is in some doubt because of considerable phenotypic overlap with other entities such as Roberts (268300) and Saethre-Chotzen (101400) syndromes.  The latter however is caused by a mutation in the TWIST1 gene and the former by mutations in the ESCO2 gene.

The same gene is mutated in Rothmund-Thomson syndrome (268400) suggesting allelism of the two disorders.  The phenotype is vastly different in the two disorders however.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available.

References
Article Title: 

Apert Syndrome

Clinical Characteristics
Ocular Features: 

In 10% of patients, keratitis and corneal scarring occur from the sometimes marked proptosis and corneal exposure.  Optic atrophy is present in over 20% of patients.  Strabismus, primarily exotropia, is found in more than 70% and various extraocular muscle anomalies may be detectable.  Usually the exotropia has a V-pattern with overaction of the inferior oblique muscles while the superior oblique is weak.  Amblyopia occurs in nearly 20%.  The lid fissures often slant downward and the eyebrows may be interrupted.

Systemic Features: 

This brachysphenocephalic type of acrocephaly is associated with syndactyly in the hands and feet.  Pre- and postaxial polydactyly may be present.  There is considerable variation in expression with some patients so mildly affected that they appear virtually normal, whereas others have extreme degrees of brachycephaly with high foreheads, midface hypoplasia, and proptosis secondary to shallow orbits.  Imaging often reveals one or more CNS anomalies such as defects of the corpus callosum, partial absence of the septum pellucidum, ventriculomegaly, and sometimes hydrocephalus.  A small but significant proportion of patients have some developmental delay and cognitive impairment.  Over 39% of patients have a normal IQ.

Genetics

This type of craniosynostosis is caused by mutations in the fibroblast growth factor receptor-2 gene, FGFR2, located at 10q26.13.  It is generally considered an autosomal dominant disorder based on familial cases but most occur sporadically.  A paternal age effect on mutations has been found.  The same gene is mutant in allelic disorders sometimes clinically separated and labeled Crouzon (123500) and Pfeiffer (some cases) (101600) syndromes.  Jackson-Weiss syndrome (123150) maps to the same locus.  However, this entire group has many overlapping features making classification on clinical grounds alone difficult.  Only Apert syndrome is caused by mutations in a single gene whereas other syndromes seem to result from mutations in multiple genes.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No specific treatment is available for this disorder but exposure keratitis may require surveillance and therapy.

References
Article Title: 

Sulfite Oxidase Deficiency

Clinical Characteristics
Ocular Features: 

Dislocated lenses are the only significant ocular features of this disorder.  In one patient the lenses were said to be in normal position at 5.5 months of age but mild nasal subluxation of both lenses was present at 11 months.  In a series of 22 patients, 10 had dislocated lenses and one had spherophakia.  Lens dislocations occur early and maybe even congenitally in some cases as the diagnosis has been made in seven children before one year of age.  On the other hand it is not a consistent sign since the lenses were not dislocated in seven individuals who were examined specifically for this sign.

Systemic Features: 

Outside of the eye, the main features of this disorder are secondary to neurological damage.  Symptoms of irritability, poor feeding, ataxia, and language development may be seen in the first year or two of life.  Respiratory distress can be a feature in neonates.  Hypotonia, dystonia and choreoathetosis may be seen as well.  Seizures (sometimes with opisthotonus) often occur in the first days or weeks of life.  Later, generalized hypertonia and hyperactive reflexes are present.  Global developmental delays occur in nearly 80% of patients.  However, some patients also have a later onset with a milder course indicating that the full range of clinical expression remains to be determined.

Genetics

A number of mutations in the SUOX gene on chromosome 12 (12q13.13) cause this rare autosomal recessive disorder.  Less than 50 cases have been reported worldwide.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Not enough patients have been evaluated for long enough to determine the optimum treatment but low protein diets and restriction of sulfur containing amino acids have been tried with mixed results.

References
Article Title: 

Isolated sulfite oxidase deficiency

Claerhout H, Witters P, Regal L, Jansen K, Van Hoestenberghe MR, Breckpot J, Vermeersch P. Isolated sulfite oxidase deficiency. J Inherit Metab Dis. 2017 Oct 4. doi: 10.1007/s10545-017-0089-4. [Epub ahead of print].

PubMed ID: 
28980090

Bardet-Biedl Syndromes

Clinical Characteristics
Ocular Features: 

The term Bardet-Biedl is applied to a clinically and genetically diverse group of disorders, of which at least 21 entities (BBS1-BBS21) are recognized.  This discussion is generically relevant to all of the phenotypes since the retinal dystrophy is common to all.

A progressive rod-cone dystrophy is a cardinal feature of all forms of Bardet-Biedl syndrome.  However, a subset of patients have primary cone degeneration.  In at least some forms of this syndrome, the cause seems to be a defect in the cilia that impairs the intraciliary protein transport between the inner and outer segments of the photoreceptors.  Vision loss has an early onset and usually progresses rapidly with severe loss of central and peripheral vision by the second or third decade of life.  Night blindness may be evident by 7 or 8 years of age.  The ERG is not recordable even in early childhood.  Pigmentary changes in the retina are often labeled retinitis pigmentosa but they are atypical for the usual disease.  Early changes are more characteristic of atrophy with a paucity of pigment but later the bone spicule pattern of hyperpigmentation appears.  The macula can appear atrophic and sometimes has a bull's eye pattern.  Optic atrophy and retinal arteriole narrowing may be seen.  Bardet-Biedl syndrome is clinically similar to Biemond syndrome (210350) except for iris colobomas that occur in the latter disorder.

Systemic Features: 

Obesity, mental retardation, renal disease, and hepatic fibrosis with syndactyly, brachydactyly, and post-axial polydactyly are characteristic.  The degree of mental handicap varies widely.  Diabetes mellitus is present in about one-third of patients.  Structural deformities of genitalia as well as hypogonadism and menstrual irregularities often occur as in some other disorders but the association of severe vision loss and characteristic retinal changes are diagnostically helpful.  Kidney failure secondary to cystic nephronophthisis or other renal malformations is common. Hypercholesterolemia is found in many patients.  Many patients have motor difficulties, appearing clumsy and unsteady.  Emotional lability and inappropriate outbursts can be part of these syndromes as well.

Genetics

The syndromes of Bardet-Biedl are inherited in an autosomal recessive pattern.  At least 21 mutations have been identified.  Not all cases are caused by homozygosity of the same mutation since compound heterozygosity at two loci may also cause similar phenotypes.

Laurence-Moon syndrome (245800) is considered part of the Bardet-Biedl group of diseases in this database. 

Mutations in PNPLA6 have been found in some individuals with a form of Bardet-Biedl syndrome as well as in Boucher-Neuhauser Syndrome (215470) also known as Chorioretinopathy, Ataxia, Hypogonadism Syndrome, and Trichomegaly Plus Syndrome (275400), in this database.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment exists for these syndromes but organ specific therapy may be helpful.

Studies in a mice model suggest that the neural retina may at least partially recover in type 1 following subretinal injection of viral vectors containing the wild-type bbs1 gene.

 

References
Article Title: 

Bardet-Biedl Syndrome

Suspitsin EN, Imyanitov EN. Bardet-Biedl Syndrome. Mol Syndromol. 2016 May;7(2):62-71.

PubMed ID: 
27385362

Predominantly cone-system dysfunction as rare form of retinal degeneration in patients with molecularly confirmed Bardet-Biedl Syndrome

Scheidecker S, Hull S, Perdomo Y, Studer F, Pelletier V, Muller J, Stoetzel C, Schaefer E, Defoort-Dhellemmes S, Drumare I, Holder Graham E, Hamel Christian P, Webster Andrew R, Moore Anthony T, Puech B, Dollfus Helene J. Predominantly cone-system dysfunction as rare form of retinal degeneration in patients with molecularly confirmed Bardet-Biedl Syndrome. Am J Ophthalmol. 2015 May 14. [Epub ahead of print]. 

PubMed ID: 
25982971

Neuropathy target esterase impairments cause Oliver-McFarlane and Laurence-Moon syndromes

Hufnagel RB, Arno G, Hein ND, Hersheson J, Prasad M, Anderson Y, Krueger LA, Gregory LC, Stoetzel C, Jaworek TJ, Hull S, Li A, Plagnol V, Willen CM, Morgan TM, Prows CA, Hegde RS, Riazuddin S, Grabowski GA, Richardson RJ, Dieterich K, Huang T, Revesz T, Martinez-Barbera JP, Sisk RA, Jefferies C, Houlden H, Dattani MT, Fink JK, Dollfus H, Moore AT, Ahmed ZM. Neuropathy target esterase impairments cause Oliver-McFarlane and Laurence-Moon syndromes. J Med Genet. 2015 Feb;52(2):85-94.

PubMed ID: 
25480986

Mutations in IFT172 Cause Isolated Retinal Degeneration and Bardet-Biedl Syndrome

Bujakowska KM, Zhang Q, Siemiatkowska AM, Liu Q, Place E, Falk MJ, Consugar M, Lancelot ME, Antonio A, Lonjou C, Carpentier W, Mohand-Sayid S, den Hollander AI, Cremers FP, Leroy BP, Gai X, Sahel JA, van den Born LI, Collin RW, Zeitz C, Audo I, Pierce EA. Mutations in IFT172 Cause Isolated Retinal Degeneration and Bardet-Biedl Syndrome. Hum Mol Genet. 2014 Aug 28.  [Epub ahead of print].

PubMed ID: 
25168386

Biemond Syndrome II

Clinical Characteristics
Ocular Features: 

This disorder may belong to the spectrum of Bardet-Biedl syndromes (209900) but is listed separately because of the prominent association of iris colobomata.  Retinal dystrophy resembling retinitis pigmentosa is also part of this disorder but the rarity of cases precludes a full description of the phenotype.

Systemic Features: 

Underdevelopment of the external genitalia is more prominent in males.  Obesity, hydrocephalus and mental retardation are also features.  Postaxial polydactyly is common.  Renal disease does not seem to be part of this disorder.

Genetics

Little is known about the inheritance or genetic defect responsible.  Colobomas and polydactyly have been found in relatives of patients with Biemond syndrome suggesting that this may be an autosomal dominant disorder with variable penetrance.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

None known.

References
Article Title: 

Behr Early Onset Optic Atrophy Syndromes

Clinical Characteristics
Ocular Features: 

Optic atrophy is the earliest sign in Behr syndrome and may be evident in early childhood.  Nystagmus is a variable feature.  Acuity in the first decade is in the 20/70 to 20/100 range with little worsening in patients followed for a decade or more even though the disc pallor may increase with loss of papillary vasculature.  ERGs are normal but VEPs are usually abnormal.

Systemic Features: 

The nosology of infantile optic atrophy is unclear.   There is no doubt that some familial cases with likely autosomal recessive inheritance lacked (or were not tested for) urinary metabolites considered diagnostic for an optic atrophy disorder with 3-methylglutaconate aciduria (258501) and labeled methylglutaconic aciduria type III (and sometimes Costeff optic atrophy syndrome).  Excretion of 3-methylglutaric acid may also be increased.  But it is also possible that another form of infantile optic atrophy without aminoaciduria also exists.  Early onset (early childhood) optic atrophy, with later (second decade) spasticity, ataxia, extrapyramidal signs and cognitive defects to some degree are common to both.  Dementia, posterior column signs and peripheral neuropathy are more variable clinical signs.  Nerve biopsies and postmortem studies show widespread disease with evidence of chronic neuropathy, neuronal loss, and gliosis.  In Behr's report, the neurologic symptoms remained static after a period of progression.   Others have reported progression with the majority of patients severely handicapped by the third decade of life.

Genetics

Sibs born to consanguineous parents suggest autosomal recessive inheritance in both Behr syndrome with ataxia and in 3-methylglutaconic aciduria, type III.  The latter is most commonly found among Iraqi Jews and is the result of a mutation in the OPA3 gene (19q13.2-q13.3).  The genetic basis for simple Behr infantile optic atrophy is unclear and it is likely that multiple unique entities exist.  This disorder is allelic to an autosomal dominant disorder called Optic Atrophy 3 and Cataracts (165300) but the uniqueness of the latter entity is uncertain.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

None known

References
Article Title: 

Aniridia 1

Clinical Characteristics
Ocular Features: 

Aniridia is the name of both a disorder and a group of disorders.  This because aniridia is both an isolated ocular disease and a feature of several malformation syndromes.  Absence of the iris was first reported in the early 19th century.  The hallmark of the disease is bilateral iris hypoplasia which may consist of minimal loss of iris tissue with simple radial clefts, colobomas, pseudopolycoria, and correctopia, to nearly complete absence.  Goniosocopy may be required to visualize tags of iris root when no iris is visible externally.  Glaucoma is frequently present (~67%) and often difficult to treat.  It is responsible for blindness in a significant number of patients.  About 15% of patients are diagnosed with glaucoma in each decade of life but this rises to 35% among individuals 40-49 years of age.  Hypoplasia and dysplasia of the fovea are likely responsible for the poor vision in many individuals.  Nystagmus is frequently present.  The ciliary body may also be hypoplastic. 

Visual acuity varies widely.  In many families it is less than 20/60 in all members and the majority have less than 20/200.  Photophobia can be incapacitating.  Posterior segment OCT changes suggest that outer retinal damage suggestive of a phototoxic retinopathy may also be a factor in the reduced acuity.  Cataracts (congenital in >75%), ectopia lentis (bilateral in >26%), optic nerve hypoplasia, variable degrees of corneal clouding with or without a vascularized pannus, and dysgenesis of the anterior chamber angle are frequently present. 

Increased corneal thickness (>600 microns) has been found in some series and should be considered when IOP measurements are made.  In early stages of the disease, focal opacities are present in the basal epithelium, associated with sub-basal nerves.  Dendritic cells can infiltrate the central epithelium and normal limbal palisade architecture is absent. 

Meibomian gland anomalies also contribute to the corneal disease.  The glands may be decreased in number and smaller in size contributing to deficiencies of the tear film and unstable surface wetting.

Systemic Features: 

In addition to 'pure' aniridia in which no systemic features are found, at least six disorders have been reported in which systemic anomalies do occur.  Three of these have associated renal anomalies, including Wilms tumor with other genitourinary anomalies and mental retardation, sometimes called WAGR (194072) syndrome, another (612469) with similar features plus obesity sometime called WAGRO (612469) syndrome reported in isolated patients, and yet another with partial aniridia (206750) and unilateral renal agenesis and psychomotor retardation reported in a single family.  Aniridia with dysplastic or absent patella (106220) has been reported in a single three generation family.  Cerebellar ataxia and mental retardation with motor deficits (Gillespie syndrome; 206700) have been found in other families with anirdia.  Another 3 generation family has been reported in which aniridia, microcornea and spontaneously resorbed cataracts occured (106230).

About one-third of patients with aniridia also have Wilms tumor and many have some cognitive deficits.

Genetics

The majority of cases have a mutation in the paired box gene (PAX6) complex, or at least include this locus when chromosomal aberrations such as deletions are present in the region (11p13).  This complex (containing at least 9 genes) is multifunctional and important to the tissue regulation of numerous developmental genes.   PAX6 mutations, encoding a highly conserved transcription regulator, generally cause hypoplasia of the iris and foveal hypoplasia but are also important in CNS development.  It has been suggested that PAX6 gene dysfunction may be the only gene defect associated with aniridia.  More than 300 specific mutations, most causing premature truncation of the polypeptide, have been identified.  

AN1 results from mutations in the PAX6 gene.  Two additional forms of aniridia have been reported in which functional alterations in genes that modulate the expression of PAX6 are responsible: AN2 (617141) with mutations in ELP4 and AN3 (617142) with mutations in TRIM44.  Both ELP4 and TRIM44 are regulators of the PAX6 transcription gene.

Associated abnormalities may be due to a second mutation in the WT1 gene in WAGR (194072) syndrome, a deletion syndrome involving both WT1 and PAX6 genes at 11p13.  The WAGRO syndrome (612469) is caused by a contiguous deletion in chromosome 11 (11p12-p13) involving three genes: WT1, PAX6, and BDNF.  All types are likely inherited as autosomal dominant disorders although nearly one-third of cases occur sporadically.

Mutations in PAX6 associated with aniridia can cause other anterior chamber malformations such as Peters anomaly (604229).

Gillespie syndrome (206700 ) is an allelic disorder with neurological abnormalities including cerebellar ataxia and mental retardation.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Treatment is directed at the associated threats to vision such as glaucoma, corneal opacities, and cataracts.  Glaucoma is the most serious threat and is the most difficult to treat. The best results have been reported with glaucoma drainage devices.  All patients should have eye examinations at appropriate intervals throughout life, focused on glaucoma screening.  It is well to keep in mind that foveal maldevelopment often precludes significant improvement in acuity and heroic measures must be carefully evaluated.  Specifically, corneal transplants and glaucoma control measures frequently fail.

Low vision aids are often helpful.  Tinted lenses can minimize photophobia.  Occupational and vocational training should be considered for older individuals.  Surface wetting of the cornea should be periodically evaluated and appropriate topical lubrication used as needed. 

Young children with aniridia should have periodic examinations with renal imaging as recommended by a urologist.

In mice, postnatal topical ocular application of ataluren-based eyedrop formulations can reverse malformations caused by PAX6 mutations.

References
Article Title: 

Familial aniridia with preserved

Elsas FJ, Maumenee IH, Kenyon KR, Yoder F. Familial aniridia with preserved ocular function. Am J Ophthalmol. 1977 May;83(5):718-24.

PubMed ID: 
868970

Pages

Subscribe to RSS - mental retardation