mental retardation

Retinitis Pigmentosa, Deafness, Mental Retardation and Hypogonadism

Clinical Characteristics
Ocular Features: 

Only two families with this presumed disorder have been reported.  The retinal picture resembles retinitis pigmentosa with ‘bone spicule’ pigment clumps, vascular attenuation, and pale optic nerve heads.  Cataracts and nystagmus have been observed.  Vision is usually limited to light perception by the middle of the first decade of life.

Systemic Features: 

Small testes and gynecomastia are found in males while females have oligo- or amenorrhea.  The hands and feet appear broad and the face has a coarse appearance with a depressed nasal bridge and a broad nose.  Insulin-resistant diabetes and hyperinsulinemia are present.  Acanthosis nigricans, keloids, obesity, and hearing loss are also features.  All patients have significant developmental delays and evident mental retardation.

Genetics

No locus has been identified although autosomal recessive inheritance seems likely: the parents in one family were first cousins and there was no parent to child transmission.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

There is no effective treatment although cataract surgery might be considered if lens opacities are visually significant.

References
Article Title: 

Gurrieri Syndrome

Clinical Characteristics
Ocular Features: 

Tapetoretinal degeneration has been described in several patients.  Some patients have keratoconus with lens and corneal opacities.  Visual acuities have not been reported.  The full ocular phenotype must be considered unknown since most patients have not had full ophthalmic evaluations.

Systemic Features: 

Features of an osteodysplasia are among the most striking in this syndrome.  Short stature, brachydactyly, delayed bone age, osteoporosis, and hypoplasia of the acetabulae and iliac alae are usually present.  Birth weight is often low.  Joints may be hyperflexible as part of the generalized hypotonia. The eyes are deep-set, the nasal bridge is prominent, the midface is flat, and the supraorbital ridges are prominent giving the face a rather coarse look.  Prognathism with a prominent lower lip and dental malocclusion reinforce this appearance.  Seizures beginning in early childhood may be difficult to control.  Most patients have severe psychomotor retardation and never acquire speech.

Genetics

The genetics of this familial disorder remain unknown.  No locus or mutation has been identified but one patient had an absent maternal allele of the proximal 15q region as found in Angelman syndrome.

Orofaciodigital syndrome IX (258865) is another autosomal recessive syndrome sometimes called Gurrieri syndrome.  In Gurrieri’s original description of two brothers, chorioretinal lacunae, similar to those seen in Aicardi syndrome (304050), were present.  The systemic features are dissimilar, however.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

Canavan Disease

Clinical Characteristics
Ocular Features: 

Optic atrophy is the primary and perhaps only ocular manifestation of Canavan disease.  Acuity levels have not been reported but it has been noted that some infants and young children with early onset severe disease are able to track targets.  The ocular phenotype has not been well delineated.

Systemic Features: 

The clinical diagnosis of Canavan disease is suggested when the triad of hypotonia, macrocephaly and head lag is present.  It is a progressive form of spongy degeneration of the central nervous system but its onset, course, and severity are variable.

The disease is often evident before 6 months of age and survival is limited to a few months or years in infants with such early onset.  Such patients have the most severe and rapidly progressive disease.  It is noteworthy that, even though such infants do not achieve normal milestones such as sitting and standing, they do often interact socially by laughing, smiling, and reaching for objects.  Most young children are quiet and apathetic but some become irritable and develop spasticity as they grow.  CNS damage is evident as leukodystrophy on neuroimaging studies but this may not be present in later onset, milder forms of the disease.         

Other individuals may have a later and milder juvenile onset of symptoms and may present with delayed speech or motor development late in the first decade.  They often attend regular school but may benefit from tutoring and speech therapy.  They may live to adolescence or early adulthood.  Maldevelopment of the organ of Corti is responsible for hearing deficits in some children.

Genetics

Canavan disease is an autosomal recessive disorder resulting from homozygous or compound heterozygous mutations in the gene (ASPA) located at 17p13.2 encoding the enzyme aspartoacylase.  N-acetylaspartic acid (NAA) levels are usually elevated in urine.  However, because the levels of NAA can vary depending on the severity of clinical disease, gene testing provides a more reliable diagnosis. 

The carrier frequency is high among members of the Ashkenazi Jewish population.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Antiepileptic drugs can be helpful.  Augmented feeding (gastric tubes)may be needed to maintain nutrition, while physical therapy and exercise may prevent contractures.  Speech therapy and low vision aids might be of benefit. Rare patients with a hearing deficit should be evaluated for possible benefit of hearing aids.

References
Article Title: 

Mowat-Wilson Syndrome

Clinical Characteristics
Ocular Features: 

Most reports of Mowat-Wilson disorders provide only incomplete ocular findings and the full phenotype remains to be described.  Most of the reported findings are part of the facial phenotype, such as downward slanting palpebral fissures, and 'wedge-shaped' eyebrows with the medial portion visibly wider than the temporal region.  Hypertelorism, strabismus and telecanthus have also been noted.  However, optic nerve atrophyor aplasia, RPE atrophy, microphthalmia, ptosis, and cataracts are sometimes present while strabismus is more common.  Iris and other uveal colobomas may be present and at least one patient has been reported with retinal aplasia.  There may be considerable asymmetry in the features among the two eyes.

Systemic Features: 

This is a highly complex dysmorphic developmental disorder with unusual progression of facial features.  Birth weight and length are usually normal but later there is general somatic and mental growth delay with microcephaly (pre- and post natal), short stature, intellectual disability, and epilepsy (70%).  Hypotonia has been noted at birth.  A significant proportion (~50%) of patients have Hirschsprung disease with megacolon.  Congenital heart defects are common, many involving septal openings.  Hypospadias is often present with or without other genitourinary anomalies.  Teeth are often crowded and crooked.  The earlobes may be flattened and may have a central depression.

The facial features are present in early childhood but as they mature the upper half of the nasal profile becomes convex, while the nasal tip becomes longer and overhangs the philtrum.  The eyes appear more deeply set.  The chin lengthens and prognathism becomes apparent.  IQ levels cannot be determined but many individuals exhibit behavioral or emotional disturbances.

Genetics

Heterozygous mutations in ZEB2 (2q22.3) are responsible for most cases (81%) of this disorder.  A large number of molecular mutations, many of the nonsense type, have been reported. About 2-4% of patients have cytogenetic alterations involving the 2q22 region.

Another disorder with microcephaly, intellectual disability and Hirschsprung disease is Goldberg-Shprintzen syndrome (609460) with mutations in the KIAA1279 gene.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Treatment may be directed at specific defects but there is no treatment for the general disorder. Individuals can live to adulthood. Treatment is largely symptomatic.  Physical and speech treatment can be helpful if initiated early.

References
Article Title: 

Phenotype and genotype of 87 patients with Mowat-Wilson syndrome and

Ivanovski I, Djuric O, Caraffi SG, Santodirocco D, Pollazzon M, Rosato S,
Cordelli DM, Abdalla E, Accorsi P, Adam MP, Ajmone PF, Badura-Stronka M, Baldo C,
Baldi M, Bayat A, Bigoni S, Bonvicini F, Breckpot J, Callewaert B, Cocchi G,
Cuturilo G, De Brasi D, Devriendt K, Dinulos MB, Hjortshoj TD, Epifanio R,
Faravelli F, Fiumara A, Formisano D, Giordano L, Grasso M, Gronborg S, Iodice A,
Iughetti L, Kuburovic V, Kutkowska-Kazmierczak A, Lacombe D, Lo Rizzo C, Luchetti
A, Malbora B, Mammi I, Mari F, Montorsi G, Moutton S, Moller RS, Muschke P,
Nielsen JEK, Obersztyn E, Pantaleoni C, Pellicciari A, Pisanti MA, Prpic I,
Poch-Olive ML, Raviglione F, Renieri A, Ricci E, Rivieri F, Santen GW, Savasta S,
Scarano G, Schanze I, Selicorni A, Silengo M, Smigiel R, Spaccini L, Sorge G,
Szczaluba K, Tarani L, Tone LG, Toutain A, Trimouille A, Valera ET, Vergano SS,
Zanotta N, Zenker M, Conidi A, Zollino M, Rauch A, Zweier C, Garavelli L.
Phenotype and genotype of 87 patients with Mowat-Wilson syndrome and
recommendations for care
. Genet Med. 2018 Jan 4. doi: 10.1038/gim.2017.221. [Epub
ahead of print].

PubMed ID: 
29300384

Clinical spectrum of eye malformations in four patients with Mowat-Wilson syndrome

Bourchany A, Giurgea I, Thevenon J, Goldenberg A, Morin G, Bremond-Gignac D, Paillot C, Lafontaine PO, Thouvenin D, Massy J, Duncombe A, Thauvin-Robinet C, Masurel-Paulet A, Chehadeh SE, Huet F, Bron A, Creuzot-Garcher C, Lyonnet S, Faivre L. Clinical spectrum of eye malformations in four patients with Mowat-Wilson syndrome. Am J Med Genet A. 2015 Apr 21. [Epub ahead of print]

PubMed ID: 
25899569

The behavioral phenotype of Mowat-Wilson syndrome

Evans E, Einfeld S, Mowat D, Taffe J, Tonge B, Wilson M. The behavioral phenotype of Mowat-Wilson syndrome. Am J Med Genet A. 2012 Feb;158A(2):358-66. doi: 10.1002/ajmg.a.34405.

PubMed ID: 
22246645

Mowat-Wilson syndrome: facial phenotype changing with age: study of 19 Italian patients and review of the literature

Garavelli L, Zollino M, Mainardi PC, Gurrieri F, Rivieri F, Soli F, Verri R, Albertini E, Favaron E, Zignani M, Orteschi D, Bianchi P, Faravelli F, Forzano F, Seri M, Wischmeijer A, Turchetti D, Pompilii E, Gnoli M, Cocchi G, Mazzanti L, Bergamaschi R, De Brasi D, Sperandeo MP, Mari F, Uliana V, Mostardini R, Cecconi M, Grasso M, Sassi S, Sebastio G, Renieri A, Silengo M, Bernasconi S, Wakamatsu N, Neri G. Mowat-Wilson syndrome: facial phenotype changing with age: study of 19 Italian patients and review of the literature. Am J Med Genet A. 2009 Mar;149A(3):417-26. Review.

PubMed ID: 
19215041

Clinical and mutational spectrum of Mowat-Wilson syndrome

Zweier C, Thiel CT, Dufke A, Crow YJ, Meinecke P, Suri M, Ala-Mello S, Beemer F, Bernasconi S, Bianchi P, Bier A, Devriendt K, Dimitrov B, Firth H, Gallagher RC, Garavelli L, Gillessen-Kaesbach G, Hudgins L, K?SS?SSri?SSinen H, Karstens S, Krantz I, Mannhardt A, Medne L, M?ocke J, Kibaek M, Krogh LN, Peippo M, Rittinger O, Schulz S, Schelley SL, Temple IK, Dennis NR, Van der Knaap MS, Wheeler P, Yerushalmi B, Zenker M, Seidel H, Lachmeijer A, Prescott T, Kraus C, Lowry RB, Rauch A. Clinical and mutational spectrum of Mowat-Wilson syndrome. Eur J Med Genet. 2005 Apr-Jun;48(2):97-111

PubMed ID: 
16053902

Spastic Ataxia, Optic Atrophy, Mental Retardation

Clinical Characteristics
Ocular Features: 

Optic atrophy is generally but not always present.  Internuclear ophthalmoplegia and nystagmus have been reported. 

Systemic Features: 

This progressive neurodegenerative disorder has its onset in early childhood with delayed psychomotor development, spastic ataxia of the limbs, and dysarthria.  Tremor, dysmetria, and poor coordination of fine movements are often present.  A sensorineural hearing loss has been found in several individuals.  Peripheral neuropathy has been reported as well.  The nature and degree of cognitive impairment has not been quantified.

Genetics

The presence of consanguinity in one family and affected sibs in another suggest autosomal recessive inheritance but nothing is known about the genotype.  The signs and symptoms resemble those found in other spastic ataxias and this may not be a unique disorder.

Optic atrophy is also found in autosomal recessive SPAX4 (613672) and in autosomal dominant SPAX7 (108650).      

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

CHARGE Syndrome

Clinical Characteristics
Ocular Features: 

Both ocular and systemic abnormalities are highly variable, even within families.  Among the most common ocular features are unilateral or bilateral ocular colobomas (80%).  These involve the iris most frequently but they may extend into the posterior chamber and rarely involve the optic nerve.  A significant number of patients with uveal colobomas have an associated microphthalmia.  The lid fissures often slant downward.  A few patients have congenital cataracts, optic nerve hypoplasia, persistent hyperplastic vitreous, and strabismus.

Systemic Features: 

A wide variety of systemic anomalies have been reported.  Congenital heart defects (primarily septal) and CNS malformations are among the most common features, reported in 85% and 55% respectively.  Tetralogy of Fallot is considered by some to be the most common heart malformation.  Growth and mental retardation are found in nearly 100%.  The pinnae are often set low and hearing loss is common.  Ear anomalies, both internal and external, have been described in 91%, and some degree of conduction and/or sensorineural deafness is present in 62%.  Choanal atresia is found in at least 57% of patients.  This along with cleft palate and sometimes esophageal atresia or reflux often contributes to feeding difficulties which are common in all age groups.  Cranial nerve deficits are seen in 92% of patients and more than one nerve is involved in nearly 3 of 4 patients.  The most common cranial nerve defects involve numbers IX, X, VIII, and V.  Facial palsies are an especially important feature. Hypogonadotropic hypogonadism and underdevelopment of the external genitalia are often seen, especially in males.  One-third of patients have limb anomalies and many have short digits.  The facies is considered by some as characteristic with a square configuration, broad forehead, flat midface, and a broad nasal bridge.

Infant and childhood morbidity is high with feeding difficulties a major cause of death.

Genetics

Many cases occur sporadically but family patterns consistent with autosomal dominant inheritance are common as well.  Advanced paternal age may be a factor in de novo cases.  Sequence variants of multiple types have been reported in the CHD7 gene (8q12.1-q12.2) in more than 90% of familial patients.  The gene product is a DNA –binding protein that impacts transcription regulation via chromatin remodeling.

Kallmann syndrome (hypogonadotropic hypogonadism and anosmia) has been considered to be allelic to CHARGE syndrome but may be the same disorder since mutations in CHD7 are responsible and many patients have other features characteristic of the syndrome described here.

Several patients with classical features of the CHARGE syndrome and de novo mutations in the SEMA3E gene (7q21.11) have also been described.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Treatment is lesion dependent but focused on airway, feeding, and cardiac defects at least initially.  Regular ophthalmologic and audiologic evaluations are recommended beginning in infancy.  Evidence for hypogonadism should be evaluated if puberty is delayed.  Nutrition must be monitored especially in those with serious feeding problems.  Hearing devices, with speech, occupational, and education therapy may be required.

References
Article Title: 

Congenital Disorder of Glycosylation, Type Ij

Clinical Characteristics
Ocular Features: 

Bilateral cataracts are present at birth.  Nystagmus, strabismus, and long eyelashes have been reported.

Systemic Features: 

This is a disorder of glycosylation important to the formation of glycoproteins and glycolipids.  Neurological signs such as tremor, clonus, and muscle fasiculations may be seen soon after birth.  Other neurological abnormalities eventually include psychomotor retardation, seizures, mental retardation, hyperexcitabilty, and ataxia.  Failure to thrive and feeding difficulties are evident early.  Progressive microcephaly is a feature.  Liver dysfunction can lead to coagulopathy and hypoproteinemia with hepatomegaly is sometimes present.  Some patients have facial anomalies, inverted nipples, and subcutaneous fat pads.  The MRI may show areas of brain atrophy, ischemia, and focal necrosis.

Longevity is limited with 2 of 3 reported patients dying within 2 years of life.

Genetics

This is a rare autosomal recessive disorder resulting from mutations in DPAGT1 (11q23.3) resulting in defective N-glycosylation.  There are numerous other types of glycosylation defects with variations in the clinical manifestations.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Treatment consists of fluid and caloric intake management.  Hypoproteinemia and coagulation defects may respond to oral mannose administration.

References
Article Title: 

Retinitis Pigmentosa and Mental Retardation

Clinical Characteristics
Ocular Features: 

The lenses may have pleomorphic white axial opacities but in other patients can be totally opacified.  Optic atrophy is present and vision may be reduced to light perception but nystagmus is absent.  Evidence suggests that vision loss is progressive.  Some patients have extensive posterior synechiae while others have been noted to have sluggish pupils.  High myopia is a feature. The retinal pigmentation has a typical retinitis pigmentosa picture with attenuated retinal vessels and equatorial bone spicule pigmentation located in the midperiphery while the macula can have a bull’s eye appearance.   

Systemic Features: 

Early development may seem normal but developmental milestones are usually delayed.  Postnatal microcephaly and growth deficiency with mental retardation and early hypotonia are typical features.  The mental retardation may be severe.  Scoliosis and arachnodactyly have been noted and hypogonadism has been reported.  Speech may not develop and mobility is sometimes limited.

Genetics

The family pattern suggests autosomal recessive inheritance.  Homozygosity mapping has identified in a region of chromosome 8 (8q21.2-22.1) that overlaps the region for Cohen syndrome () but no specific mutated gene has been identified.      

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

None.

References
Article Title: 

Coloboma, Ptosis, Hypertelorism, and Global Delay

Clinical Characteristics
Ocular Features: 

The ocular phenotype includes ptosis, hypertelorism, iris coloboma and prominent epicanthal folds with epicanthus inversus.  The coloboma may be unilateral and involve other portions of the uveal tract. The orbits have been described as shallow.  At least one patient has been described as having microphthalmia and microcornea.

Systemic Features: 

The systemic features reported include severe global delay, a broad nasal bridge, and short stature.  Physical growth delay, mental retardation, short neck, low-set ears, and low posterior hairline have been noted.  Males may have a micropenis and undescended testicles.  The pinnae may be malformed and rotated posteriorly. Several patients had a hearing deficit.

CT scans have shown microcephaly with pachygyria and or even virtual agyria of the frontal, temporal, and parietal lobes.

Genetics

This condition is caused by heterozygous mutations in the ACTG1 gene (17q25.3) and therefore transmitted in an autosomal dominant pattern.  Sibs but no parental consanguinity has been reported.  Both sexes are affected.

Mutations in the same gene are responsible for a somewhat similar condition known as Baraister-Winter 2 syndrome (614583).

Temtamy syndrome (218340) has some similar features but is caused by mutations in C12orf57 (12p13).  In addition to microphthalmia and colobomas, intractable seizures, global delay and abnormalities of the corpus callosum are present.

Several patients that may have had this syndrome have had pericentric inversions of chromosome 2: inv(2)(p12q14).  The PAX8 gene maps to the distal breakpoint of this inversion and may play a role as the location of a recessive mutation or as part of a submicroscopic inversion.  No parent-child transmission has been reported.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

Exome sequencing identifies compound heterozygous mutations in C12orf57 in two siblings with severe intellectual disability, hypoplasia of the corpus callosum, chorioretinal coloboma, and intractable seizures

Platzer K, Huning I, Obieglo C, Schwarzmayr T, Gabriel R, Strom TM, Gillessen-Kaesbach G, Kaiser FJ. Exome sequencing identifies compound heterozygous mutations in C12orf57 in two siblings with severe intellectual disability, hypoplasia of the corpus callosum, chorioretinal coloboma, and intractable seizures. Am J Med Genet A. 2014 May 5. [Epub ahead of print].

PubMed ID: 
24798461

Chorioretinal dysplasia, lymphedema, and microcephaly

Clinical Characteristics
Ocular Features: 

The congenital lymphedema results in thickened and ptotic eyelids with prominent epicanthal folds.  Congenital ptosis is not uncommon in the general population in the absence of lymphedema so that this feature by itself is insufficient to diagnose this syndrome.  Retinal folds with variable degrees of pigmentary changes are often present.  Narrowed retinal vessels, atrophic nerve heads and progressive chorioretinopathy have been reported.  Visual acuity is often reduced, sometimes severely, and nystagmus may be present.

Systemic Features: 

Coarse hair follicles over the dorsum of the hands and feet and white nails when combined with the thickened, ptotic eyelids suggest the presence of lymphedema.  The hair pattern is often altered on the arms, nape of the neck, and the back.  White lines in the palms are also suggestive.  The 'facial phenotype' includes full cheeks, flat nasal bridge and underdeveloped supraorbital ridges, up slanting palpebral fissures, broad nose with rounded tip, anteverted nares, and a long philtrum, thin upper lip, and sometimes micrognathia. The ears may appear large.  Children with this syndrome are often hypotonic during the newborn period but this feature is less evident later in childhood and improves more rapidly than the resolution of the lymphedema. The lymphedema usually improves during early childhood and is often confined to the dorsum of the hands and feet at that time.  Psychomotor development is variably delayed and some but not all patients are mentally retarded. Microcephaly is a consistent feature.

Not all features are present in all patients and, specifically, there are often microcephalic relatives who lack other signs.

Genetics

This is an autosomal dominant disorder which may consist of more than one entity but at least some cases result from heterozygous mutations in KIF11 (10q23.33).  The gene encodes a member of the kinesin family of proteins responsible for cytoplasmic mechanisms that are essential for spindle assembly and function as well in transportation of other intracellular organelles.  Mutations in this gene have also been implicated in familial exudative vitreoretinopathy (FEVR) and there is phenotypic overlap with the condition described here.

It is not unusual for microcephalic individuals to also have chorioretinal dysplasia and/or pigmentary retinopathy.  See microcephaly, chorioretinal dysplasia, mental retardation (156590), for a somewhat similar autosomal dominant condition, as well as microcephaly with chorioretinopathy, AR (251270) for an autosomal recessive condition with this combination.  Neither of these conditions is associated with congenital lymphedema, however.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

Phenotypic Overlap Between Familial Exudative Vitreoretinopathy and Microcephaly, Lymphedema, and Chorioretinal Dysplasia Caused by KIF11 Mutations

Robitaille JM, Gillett RM, LeBlanc MA, Gaston D, Nightingale M, Mackley MP, Parkash S, Hathaway J, Thomas A, Ells A, Traboulsi EI, Heon E, Roy M, Shalev S, Fernandez CV, MacGillivray C, Wallace K, Fahiminiya S, Majewski J, McMaster CR, Bedard K. Phenotypic Overlap Between Familial Exudative Vitreoretinopathy and Microcephaly, Lymphedema, and Chorioretinal Dysplasia Caused by KIF11 Mutations. JAMA Ophthalmol. 2014 Aug 14.

PubMed ID: 
25124931

Microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR): review of phenotype associated with KIF11 mutations

Jones GE, Ostergaard P, Moore AT, Connell FC, Williams D, Quarrell O, Brady AF, Spier I, Hazan F, Moldovan O, Wieczorek D, Mikat B, Petit F, Coubes C, Saul RA, Brice G, Gordon K, Jeffery S, Mortimer PS, Vasudevan PC, Mansour S. Microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR): review of phenotype associated with KIF11 mutations. Eur J Hum Genet. 2013 Nov 27.  [Epub ahead of print).

PubMed ID: 
24281367

Mutations in KIF11 Cause Autosomal-Dominant Microcephaly Variably Associated with Congenital Lymphedema and Chorioretinopathy

Ostergaard P, Simpson MA, Mendola A, Vasudevan P, Connell FC, van Impel A, Moore AT, Loeys BL, Ghalamkarpour A, Onoufriadis A, Martinez-Corral I, Devery S, Leroy JG, van Laer L, Singer A, Bialer MG, McEntagart M, Quarrell O, Brice G, Trembath RC, Schulte-Merker S, Makinen T, Vikkula M, Mortimer PS, Mansour S, Jeffery S. Mutations in KIF11 Cause Autosomal-Dominant Microcephaly Variably Associated with Congenital Lymphedema and Chorioretinopathy. Am J Hum Genet. 2012 Jan 24. [Epub ahead of print].

PubMed ID: 
22284827

Pages

Subscribe to RSS - mental retardation