Aniridia 1

Clinical Characteristics
Ocular Features: 

Aniridia is the name of both a disorder and a group of disorders.  This because aniridia is both an isolated ocular disease and a feature of several malformation syndromes.  Absence of the iris was first reported in the early 19th century.  The hallmark of the disease is bilateral iris hypoplasia which may consist of minimal loss of iris tissue with simple radial clefts, colobomas, pseudopolycoria, and correctopia, to nearly complete absence.  Goniosocopy may be required to visualize tags of iris root when no iris is visible externally.  Glaucoma is frequently present (~67%) and often difficult to treat.  It is responsible for blindness in a significant number of patients.  About 15% of patients are diagnosed with glaucoma in each decade of life but this rises to 35% among individuals 40-49 years of age.  Hypoplasia and dysplasia of the fovea are likely responsible for the poor vision in many individuals.  Nystagmus is frequently present.  The ciliary body may also be hypoplastic. 

Visual acuity varies widely.  In many families it is less than 20/60 in all members and the majority have less than 20/200.  Photophobia can be incapacitating.  Posterior segment OCT changes suggest that outer retinal damage suggestive of a phototoxic retinopathy may also be a factor in the reduced acuity.  Cataracts (congenital in >75%), ectopia lentis (bilateral in >26%), optic nerve hypoplasia, variable degrees of corneal clouding with or without a vascularized pannus, and dysgenesis of the anterior chamber angle are frequently present. 

Increased corneal thickness (>600 microns) has been found in some series and should be considered when IOP measurements are made.  In early stages of the disease, focal opacities are present in the basal epithelium, associated with sub-basal nerves.  Dendritic cells can infiltrate the central epithelium and normal limbal palisade architecture is absent. 

Meibomian gland anomalies also contribute to the corneal disease.  The glands may be decreased in number and smaller in size contributing to deficiencies of the tear film and unstable surface wetting.

Systemic Features: 

In addition to 'pure' aniridia in which no systemic features are found, at least six disorders have been reported in which systemic anomalies do occur.  Three of these have associated renal anomalies, including Wilms tumor with other genitourinary anomalies and mental retardation, sometimes called WAGR (194072) syndrome, another (612469) with similar features plus obesity sometime called WAGRO (612469) syndrome reported in isolated patients, and yet another with partial aniridia (206750) and unilateral renal agenesis and psychomotor retardation reported in a single family.  Aniridia with dysplastic or absent patella (106220) has been reported in a single three generation family.  Cerebellar ataxia and mental retardation with motor deficits (Gillespie syndrome; 206700) have been found in other families with anirdia.  Another 3 generation family has been reported in which aniridia, microcornea and spontaneously resorbed cataracts occured (106230).

About one-third of patients with aniridia also have Wilms tumor and many have some cognitive deficits.

Genetics

The majority of cases have a mutation in the paired box gene (PAX6) complex, or at least include this locus when chromosomal aberrations such as deletions are present in the region (11p13).  This complex (containing at least 9 genes) is multifunctional and important to the tissue regulation of numerous developmental genes.   PAX6 mutations, encoding a highly conserved transcription regulator, generally cause hypoplasia of the iris and foveal hypoplasia but are also important in CNS development.  It has been suggested that PAX6 gene dysfunction may be the only gene defect associated with aniridia.  More than 300 specific mutations, most causing premature truncation of the polypeptide, have been identified.  

AN1 results from mutations in the PAX6 gene.  Two additional forms of aniridia have been reported in which functional alterations in genes that modulate the expression of PAX6 are responsible: AN2 (617141) with mutations in ELP4 and AN3 (617142) with mutations in TRIM44.  Both ELP4 and TRIM44 are regulators of the PAX6 transcription gene.

Associated abnormalities may be due to a second mutation in the WT1 gene in WAGR (194072) syndrome, a deletion syndrome involving both WT1 and PAX6 genes at 11p13.  The WAGRO syndrome (612469) is caused by a contiguous deletion in chromosome 11 (11p12-p13) involving three genes: WT1, PAX6, and BDNF.  All types are likely inherited as autosomal dominant disorders although nearly one-third of cases occur sporadically.

Mutations in PAX6 associated with aniridia can cause other anterior chamber malformations such as Peters anomaly (604229).

Gillespie syndrome (206700 ) is an allelic disorder with neurological abnormalities including cerebellar ataxia and mental retardation.

Treatment
Treatment Options: 

Treatment is directed at the associated threats to vision such as glaucoma, corneal opacities, and cataracts.  Glaucoma is the most serious threat and is the most difficult to treat. The best results have been reported with glaucoma drainage devices.  All patients should have eye examinations at appropriate intervals throughout life, focused on glaucoma screening.  It is well to keep in mind that foveal maldevelopment often precludes significant improvement in acuity and heroic measures must be carefully evaluated.  Specifically, corneal transplants and glaucoma control measures frequently fail.

Low vision aids are often helpful.  Tinted lenses can minimize photophobia.  Occupational and vocational training should be considered for older individuals.  Surface wetting of the cornea should be periodically evaluated and appropriate topical lubrication used as needed. 

Young children with aniridia should have periodic examinations with renal imaging as recommended by a urologist.

In mice, postnatal topical ocular application of ataluren-based eyedrop formulations can reverse malformations caused by PAX6 mutations.

References
Article Title: 

Familial aniridia with preserved

Elsas FJ, Maumenee IH, Kenyon KR, Yoder F. Familial aniridia with preserved ocular function. Am J Ophthalmol. 1977 May;83(5):718-24.

PubMed ID: 
868970

References

Landsend ECS, Pedersen HR, Utheim OA, Xiao J, Adil MY, Tashbayev B, Lagali N, Dartt DA, Baraas RC, Utheim TP. Meibomian gland dysfunction and keratopathy are associated with dry eye disease in aniridia. Br J Ophthalmol. 2018 Mar 8. pii: bjophthalmol-2017-310927. doi: 10.1136/bjophthalmol-2017-310927. [Epub ahead of print].

PubMedID: 29519880

Gregory-Evans CY, Wang X, Wasan KM, Zhao J, Metcalfe AL, Gregory-Evans K. Postnatal manipulation of Pax6 dosage reverses congenital tissue malformation defects. J Clin Invest. 2014 Jan 2;124. Epub 2013 Dec 20.

PubMedID: 24355924

Ed?(c)n U, Fagerholm P, Danyali R, Lagali N. Pathologic Epithelial and Anterior Corneal Nerve Morphology in Early-Stage Congenital Aniridic Keratopathy. Ophthalmology. 2012 Apr 17. [Epub ahead of print].

PubMedID: 22512983

Gramer E, Reiter C, Gramer G. Glaucoma and frequency of ocular and general diseases in 30 patients with aniridia: a clinical study. Eur J Ophthalmol. 2012 Jan;22(1):104-10. doi: 10.5301/EJO.2011.8318.

PubMedID: 22167549

Gregory-Evans K, Cheong-Leen R, George SM, Xie J, Moosajee M, Colapinto P, Gregory-Evans CY. Non-invasive anterior segment and posterior segment optical coherence tomography and phenotypic characterization of aniridia. Can J Ophthalmol. 2011 Aug;46(4):337-44. Epub 2011 Jul 7.

PubMedID: 21816254

Sawada M, Sato M, Hikoya A, Wang C, Minoshima S, Azuma N, Hotta Y. A case of aniridia with unilateral Peters anomaly. J AAPOS. 2011 Feb;15(1):104-6.

PubMedID: 213997818

Kokotas H, Petersen MB. Clinical and molecular aspects of aniridia. Clin Genet. 2010 May;77(5):409-20.

PubMedID: 20132240

Robinson DO, Howarth RJ, Williamson KA, van Heyningen V, Beal SJ, Crolla JA. Genetic analysis of chromosome 11p13 and the PAX6 gene in a series of 125 cases referred with aniridia. Am J Med Genet A. 2008 Mar 1;146A(5):558-69.

PubMedID: 18241071

Elsas FJ, Maumenee IH, Kenyon KR, Yoder F. Familial aniridia with preserved ocular function. Am J Ophthalmol. 1977 May;83(5):718-24.

PubMedID: 868970