autosomal dominant

Kenny-Caffey Syndrome, Type 2

Clinical Characteristics
Ocular Features: 

Congenital cataracts have been reported in one patient.  There is a report of pseudopapilledema in a 6 year old and another patient has been described with tortuous and dilated retinal vessels.  The hyperopia is likely the result of the small globes.  In an autopsied patient microscopic calcification was noted in the cornea and the retina.

Systemic Features: 

Hypocalcemia and hyperphosphatemia similar to hypoparathyroidism is seen in individuals with KCS2 but it may be transient and self-limited.  Macrocephaly with short stature is characteristic.  Alopecia, delayed closure of the anterior fontanel, and apparent thickening of the cortex in long bones may be seen.  Males have small testicles but there is no evidence regarding fertility.  In an autopsied case no parathyroid tissue could be identified.  Brain imaging may show calcification in the basal ganglia, dentate nuclei, and parts of the cerebrum and cerebellum.  Intelligence is normal.

Genetics

Several heterozygous mutations in the FAM111A gene (11q12.1) have been found.  Many of these seem to be new mutations but there are a number of published families in which there was transmission from mother to child (of both sexes).

Heterozygous mutations in the same gene are responsible for the autosomal dominant  allelic disorder known as Gracile Bone Dysplasia (602361). 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Normalization of serum calcium and phosphorous levels would likely be beneficial but complete correction of all the findings is unlikely.  Removal of congenital cataracts should be considered.

References
Article Title: 

FAM111A mutations result in hypoparathyroidism and impaired skeletal development

Unger S, Gorna MW, Le Bechec A, Do Vale-Pereira S, Bedeschi MF, Geiberger S, Grigelioniene G, Horemuzova E, Lalatta F, Lausch E, Magnani C, Nampoothiri S, Nishimura G, Petrella D, Rojas-Ringeling F, Utsunomiya A, Zabel B, Pradervand S, Harshman K, Campos-Xavier B, Bonafe L, Superti-Furga G, Stevenson B, Superti-Furga A. FAM111A mutations result in hypoparathyroidism and impaired skeletal development. Am J Hum Genet. 2013 Jun 6;92(6):990-5.

PubMed ID: 
23684011

Ocular findings in Kenny's syndrome

Boynton JR, Pheasant TR, Johnson BL, Levin DB, Streeten BW. Ocular findings in Kenny's syndrome. Arch Ophthalmol. 1979 May;97(5):896-900.

PubMed ID: 
444124

Hypoparathyroidism, Familial Isolated

Clinical Characteristics
Ocular Features: 

Lens opacities may be present.

Systemic Features: 

The major signs and symptoms result from hypocalcemia. Neuromuscular irritability and various paresthesias may be present.  Some patients have  laryngeal spasm and latent tetany with grand mal seizures.  Alopecia, abnormal dentition and coarse brittle hair may be present.  Cognitive deficits and personality disorders are often a feature.  Brain imaging may show calcification of the basal ganglia.  Serum calcium levels are usually low while phosphorus levels are elevated.   Vitamin D precursor levels are usually low or low normal.

Genetics

Familial hypoparathyroidism may be due to mutations in the PTH gene (11p15.3) (either autosomal dominant or recessive inheritance) or in the GCMB gene (6p24.2) (autosomal dominant inheritance pattern).

There is also an X-linked form of hypoparathyroidism (307700) in which parathryroid tissue may be congenitally absent.

A family has been reported in which hypoparathryroidism was associated with lymphedema (247410) and progressive renal failure.  Ptosis, telecanthus, hypertrichosis, restrictive lung disease, and mitral valve prolapse may also be part of the disorder.

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

Normalization of calcium and phosphorus levels is a priority and this may result in some clearing of the lens opacities.  Cataract surgery may be indicated in selected individuals.

References
Article Title: 

Pseudohypoparathyroidism, Type 1A

Clinical Characteristics
Ocular Features: 

Cataracts and nystagmus are sometimes present.  Optic neuritis and papilledema have been reported and can result in optic atrophy.  The combination of cataracts and swelling of the optic nerves in children requires evaluation for hypocalcemia.

Systemic Features: 

The title refers to a group of conditions that have organ resistance to parathyroid hormone.  The phenotype is variable since there usually is a usually some degree of end-organ resistance to other hormones such as gonadotropins and TSH as in the PHP1A disorder described here.  The grouped clinical features are often referred to as Albright hereditary oseodystrophy or AHO.

Short stature with a short neck, a round face, chubby cheeks, and a depressed nasal bridge are usually present.  There may be cognitive deficits and some patients are considered to be mentally retarded.  The fourth and fifth metacarpals and sometimes metatarsals are characteristically short.   The teeth are late to erupt and can have an enamel deficit.  End organ resistance to other hormones may lead to signs of hypothyroidism and hypogonadism.  Calcification of subcutaneous tissues can result in palpable hard nodules and calcium deposition in basal ganglia and choroidal plexus may be demonstrable.  Some patients experience hypocalcemic tetany and seizures.  Hypocalcemia and hyperphosphatemia are often present along with elevated serum parathyroid hormone levels.

Genetics

This transmission pattern is likely modified by the effects of imprinting which also can modify the phenotype.  Mutltigenerational family patterns have an excess of maternal transmission.  The full phenotype is more likely expressed among maternally transmitted cases whereas partial or incomplete expression is more often seen among individuals who received the paternal allele. 

Heterozygous muttions in the GNAS1 gene (20q13.32) plays a role in this disease.  Signal transduction failure likely plays a major role in the failure of organs to respond to the appropriate hormone.

Several subtypes of pseudohypoparathyroidism have been reported but some do not have ocular signs.  However, type 1C (612462) patients can have cataracts and nystagmus with an almost identical phenotype to that of IA and may be the same condition.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Treatment focuses on normalization of calcium and phosphate serum levels.  A deficiency of vitamin D should also be corrected and has been reported to correct at least some of the lens opacities.  Cataract removal can be considered.

References
Article Title: 

Acrofacial Dysostosis, Cincinnati Type

Clinical Characteristics
Ocular Features: 

The periocular features are part of the general facial dysmorphism.  The lid fissures slant downward, and the orbits appear inferiorly displaced.  'Clefts' (colobomas?) of the lower eyelids and sometimes the upper may be evident.  The medial eyelashes were absent in one patient. 

Systemic Features: 

The extraocular features reported so far are based on only three patients and there is considerable variation.  The head is usually small and patients may be short in stature.  The zygomatic arches, the maxillae and the mandibles are hypoplastic as is the midface.  There may be anotia and severe conductive hearing loss.  The pinnae can be large and are sometimes low-set.  Inconsistent short limbs with hip dysplasia and femoral bowing have been reported.  Brachydactyly is also a feature.

Genetics

Heterozygous mutations in the POLR1A gene (2p11) seem to be responsible for this condition.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment is available for the overall condition but individual anomalies such as lid 'clefts' can be surgically repaired. Severe micrognathia may require tracheostomy at birth.

References
Article Title: 

Familial Exudative Vitreoretinopathy, EVR6

Clinical Characteristics
Ocular Features: 

Clinical features of this type of exudative retinopathy are based upon the findings in a single large Dutch pedigree containing 16 affected individuals.  The age of onset is unknown but this condition has been described in a 3 year old.  Characteristics of FEVR6 are often seen in individuals during the second or third decades when decreasing vision becomes a challenge.  While some individuals can have normal acuity, others have severe vision loss, often to finger-counting range.

Ocular findings are limited to the fundus consisting of areas of hypo- or hyperpigmentation, dragging of the macula, peripheral retinal avascularity, leaky and stretched capillaries, and exudates.  There may be falciform retinal folds and detachments.  Some patients have white masses of fibrous tissue in or overlying the retina.  Cataracts have been described in several patients.

Systemic Features: 

No systemic abnormalities have been reported.

Genetics

FEVR6 results from heterozygous mutations in the ZNF408 gene (11p11.2).  Homozygous mutations in the same gene are responsible for retinitis pigmentosa 72 (616469).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Retinal detachment surgery, while technically difficult, may provide some benefit.

References
Article Title: 

ZNF408 is mutated in familial exudative vitreoretinopathy and is crucial for the development of zebrafish retinal vasculature

Collin RW, Nikopoulos K, Dona M, Gilissen C, Hoischen A, Boonstra FN, Poulter JA, Kondo H, Berger W, Toomes C, Tahira T, Mohn LR, Blokland EA, Hetterschijt L, Ali M, Groothuismink JM, Duijkers L, Inglehearn CF, Sollfrank L, Strom TM, Uchio E, van Nouhuys CE, Kremer H, Veltman JA, van Wijk E, Cremers FP. ZNF408 is mutated in familial exudative vitreoretinopathy and is crucial for the development of zebrafish retinal vasculature. Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9856-61.

PubMed ID: 
23716654

Barber-Say Syndrome

Clinical Characteristics
Ocular Features: 

The ocular features consist mainly of skin changes in the lids including hyperlaxity and redundancy.  There may be ectropion of the lower eyelids and sparsity of the eyebrows.  Some evidence of micro- or ablepharon is often present.  Hypertelorism and exophthalmia have been described.

Systemic Features: 

Multiple external congenital anomalies are present at birth including skin laxity, hypertrichosis (especially of the forehead, neck and back), and low-set and malformed pinnae.  Macrostomia and thin lips with redundant facial skin are often evident.  The nose appears bulbous.  The thoracic skin can be atrophic and the nipples may be hypoplastic.  Hypospadias has been reported.  A highly arched or cleft palate may be present and some individuals have a conductive hearing loss.  The teeth are small and eruption may be delayed.  Cognitive deficits may be present and mental retardation has been reported. 

Genetics

Based on genotyping and the limited number of reported pedigrees, inheritance most likely follows an autosomal dominant pattern.  Direct parent to child transmission has been reported.  Detailed examination of parents sometimes reveals mild features that are easily missed.  Mutations in the TWIST2 gene have been found in 10 unrelated individuals with Barber-Say syndrome.

TWIST2 mutations have also been found in Setleis syndrome (227260) and in ablepharon-macrostomia syndrome (200110).  These conditions have some clinical features in common with Barber-Say syndrome.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

There is no known treatment for this disorder but correction of selected anomalies such as ectropion and cleft palate may be indicated.

References
Article Title: 

Recurrent Mutations in the Basic Domain of TWIST2 Cause Ablepharon Macrostomia and Barber-Say Syndromes

Marchegiani S, Davis T, Tessadori F, van Haaften G, Brancati F, Hoischen A, Huang H, Valkanas E, Pusey B, Schanze D, Venselaar H, Vulto-van Silfhout AT, Wolfe LA, Tifft CJ, Zerfas PM, Zambruno G, Kariminejad A, Sabbagh-Kermani F, Lee J, Tsokos MG, Lee CC, Ferraz V, da Silva EM, Stevens CA, Roche N, Bartsch O, Farndon P, Bermejo-Sanchez E, Brooks BP, Maduro V, Dallapiccola B, Ramos FJ, Chung HY, Le Caignec C, Martins F, Jacyk WK, Mazzanti L, Brunner HG, Bakkers J, Lin S, Malicdan MC, Boerkoel CF, Gahl WA, de Vries BB, van Haelst MM, Zenker M, Markello TC. Recurrent Mutations in the Basic Domain of TWIST2 Cause Ablepharon Macrostomia and Barber-Say Syndromes. Am J Hum Genet. 2015 Jul 2;97(1):99-110.

PubMed ID: 
26119818

Cataracts 43

Clinical Characteristics
Ocular Features: 

Cataracts apparently are diagnosed at variable ages but likely have a juvenile or earlier age of onset.  One patient in the Danish multigenerational family was diagnosed at age 18 years but was not operated upon until age 45.  The lens opacities in this individual were located centrally and in the posterior subcapsular region.  Virtually no clinical information is available since other patients in this family had previously had cataract surgery and the lens phenotype could not be determined.  No other ocular abnormalities were reported.   

Systemic Features: 

No systemic abnormalities have been reported.

Genetics

A single Danish family with 9 affected members in 3 generations has been reported.  Heterozygous mutations in UNC45B gene (17q12) are most likely responsible but other candidate genes have not been completely ruled out.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Cataract surgery may be required.

References
Article Title: 

Mental Retardation, AD 34

Clinical Characteristics
Ocular Features: 

Patients may have upslanting lid fissures, epicanthus, ptosis, synophrys, and cortical visual impairment.

Systemic Features: 

Among the three reported individuals with the COL4A3BP mutation, one had postnatal microcephaly, widely spaced teeth, synophrys, and intellectual disability. Another had trunk hypotonia, global developmental delay, wide intermamillary distance, 2-3 toe syndactyly, tonic-clonic seizures, and myopathic facies. The third had a broad-based gait, coarse and curly hair, tonic-clonic seizures, and global developmental delay. 

Genetics

In a screening study of 1133 children with severe undiagnosed developmental conditions, three males were found with heterozygous mutations in the COL4A3BP gene (5q13).  Family history data are not given for these three individuals but autosomal dominant transmission seems to be a reasonable assumption.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Supportive care is required but no other treatment has been reported.

References
Article Title: 

Cataracts, Congenital, Deafness, Short Stature, Developmental Delay

Clinical Characteristics
Ocular Features: 

The facial features superficially resemble those often seen in Down syndrome patients with slanting (up or down) lid fissures and epicanthal folds. The amount of ptosis is variable.  Lens opacities are usually congenital in origin.  Hypopigmentation of the macula has been noted in two individuals.

Systemic Features: 

The characteristic facies may be evident at birth and requires karyotyping to rule out the trisomy of Down syndrome. Brachycephaly and a flat face may be present.  The mouth is often small and the nasal tip is shortened while the philtrum is long and smooth.  Some degree of intellectual disability and neurosensory hearing loss soon become evident.  There is postnatal growth delay and most individuals are short in stature.  The ears are low-set and rotated posteriorly.

The skeletal anomalies are not fully delineated but one patient had bilateral radioulnar synostosis while hip chondrolysis requiring hip replacement has been seen in two adult individuals.  Limited motion may be present in some joints, both large and small.  Seizures have been reported in a few individuals. Nails may appear dystrophic and there are variable tooth anomalies present. 

Genetics

The responsible heterozygous mutations are in the MAF gene (16q22-q23).  Type 4 (CCA4) (610202) autosomal dominant cerulean cataracts with multiple morphologies may also result from mutations in this transcription factor gene.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No general treatment for this condition is known.  Congenital cataracts can be removed.  Some patients may benefit from special education.   Seizure medications may be indicated and some patients can benefit from hearing aids.  Severe joint disease may require replacement.

References
Article Title: 

Mutations Impairing GSK3-Mediated MAF Phosphorylation Cause Cataract, Deafness, Intellectual Disability, Seizures, and a Down Syndrome-like Facies

Niceta M, Stellacci E, Gripp KW, Zampino G, Kousi M, Anselmi M, Traversa A, Ciolfi A, Stabley D, Bruselles A, Caputo V, Cecchetti S, Prudente S, Fiorenza MT, Boitani C, Philip N, Niyazov D, Leoni C, Nakane T, Keppler-Noreuil K, Braddock SR, Gillessen-Kaesbach G, Palleschi A, Campeau PM, Lee BH, Pouponnot C, Stella L, Bocchinfuso G, Katsanis N, Sol-Church K, Tartaglia M. Mutations Impairing GSK3-Mediated MAF Phosphorylation Cause Cataract, Deafness, Intellectual Disability, Seizures, and a Down Syndrome-like Facies. Am J Hum Genet. 2015 May 7;96(5):816-25.

PubMed ID: 
25865493

Kabuki Syndrome 1

Clinical Characteristics
Ocular Features: 

The facial features and specifically the periocular anomalies are diagnostic and responsible for the eponymic designation (resembling the make-up of actors of a Japanese theatrical form known as Kabuki). The lid fissures are long and narrow and the lateral third of the lower lids are often everted.  The eyebrows are highly-arched and broad with some sparsity especially in the lateral portion.  The eyelashes are thick and ptosis is often noted. Strabismus may be present.  Blue sclerae have been reported.

Some patients may have extreme microphthalmia.

Systemic Features: 

Post-natal growth delay and short stature are present as a result of anomalies in the vertebrae often with secondary scoliosis.  Persistence of the fetal fingertip pads is common. Hypotonia and joint hypermobility have been noted and some degree of intellectual disability is common.  Seizures have been reported but these are not common. Cleft lip and palate are seen in about a third of patients and the palate is highly arched in about 75%.  The teeth are small, frequently malformed and widely spaced.  Feeding difficulties are common.  Anal anomalies such as imperforate anus, anovestibular fistulas, and an anteriorly placed opening may be present, especially in females.  A small penis, hypospadias, and cryptorchidism are common in males.

An ill-defined immune deficit seems to be a common feature as evident by susceptibility to infections, primarily otitis media in infants and later recurrent sinopulmonary infections.   The majority of patients have hypogammaglobulinemia with a variable pattern of antibody abnormalities resembling common variable immune deficiency and especially low levels of serum IgA.  

Hearing loss is seen in nearly half of patients, some of which is no doubt due to recurrent otitis media but CT radiography has demonstrated dysplastic morphology of inner ear structures and the petrous bone.  The ears are large and cupped and preauricular pits may be present as well.

Biliary atresia and a variety of morphological anomalies of the kidney have been reported.  Renal failure can occur.  Perhaps as many as 58% of patients have congenital heart defects, mostly septal in location. 

Genetics

Heterozygous mutations in KMT2D (12q13.12) (also called MLL2) are responsible for Kabuki syndrome 1 but parental transmission to offspring is rare and the majority of patients occur sporadically.  There is also an X-linked form (Kabuki 2) caused by mutations in KDM5A (Xp11.3).  Insufficient clinical data regarding the X-linked phenotype so far has precluded the ability to distinguish the two disorders without genotyping.

Residual genetic heterogeneity remains, however, as a substantial proportion of patients do not have mutations in the two mutant genes known.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

There is no general treatment for this condition.  Management guidelines are available (Management of Kabuki Syndrome).

References
Article Title: 

MLL2 and KDM6A mutations in patients with Kabuki syndrome

Miyake N, Koshimizu E, Okamoto N, Mizuno S, Ogata T, Nagai T, Kosho T, Ohashi H, Kato M, Sasaki G, Mabe H, Watanabe Y, Yoshino M, Matsuishi T, Takanashi J, Shotelersuk V, Tekin M, Ochi N, Kubota M, Ito N, Ihara K, Hara T, Tonoki H, Ohta T, Saito K, Matsuo M, Urano M, Enokizono T, Sato A, Tanaka H, Ogawa A, Fujita T, Hiraki Y, Kitanaka S, Matsubara Y, Makita T, Taguri M, Nakashima M, Tsurusaki Y, Saitsu H, Yoshiura K, Matsumoto N, Niikawa N. MLL2 and KDM6A mutations in patients with Kabuki syndrome. Am J Med Genet A. 2013 Sep;161A(9):2234-43. 

PubMed ID: 
23913813

Pages

Subscribe to RSS - autosomal dominant