strabismus

Basel-Vanagaite-Smirin-Yosef Syndrome

Clinical Characteristics
Ocular Features: 

The eyes appear abnormally far apart.  Ptosis, microcornea, congenital cataracts, sparse eyebrows, and strabismus are usually present.  Epicanthal folds are often seen.

Systemic Features: 

Psychomotor development is severely delayed and with delay or absence of milestones.  DTRs are often hyperactive but some infants are described as hypotonic.  Some individuals have seizures.  There may be a nevus flammeus simplex lesion on the forehead and body hair is sparse.  Cleft palate, cardiac septal defects, hypospadius, thin corpus callosum and cerebral ventricular dilation have been observed.  The upper lip may have a tented morphology with everted lower lip vermilion. A short philtrum is common. 

Genetics

A homozygous missense mutation in the MED25 gene (19q13.33) has been reported and the transmission pattern is consistent with autosomal recessive inheritance.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No known treatment has been reported.

References
Article Title: 

Homozygous MED25 mutation implicated in eye-intellectual disability syndrome

Basel-Vanagaite L, Smirin-Yosef P, Essakow JL, Tzur S, Lagovsky I, Maya I, Pasmanik-Chor M, Yeheskel A, Konen O, Orenstein N, Weisz Hubshman M, Drasinover V, Magal N, Peretz Amit G, Zalzstein Y, Zeharia A, Shohat M, Straussberg R, Monte D, Salmon-Divon M, Behar DM. Homozygous MED25 mutation implicated in eye-intellectual disability syndrome. Hum Genet. 2015 Jun;134(6):577-87.

PubMed ID: 
25792360

Kabuki Syndrome 2

Clinical Characteristics
Ocular Features: 

The facial features are characteristic primarily because of the appearance of the periocular features.  The eyebrows are highly arched and sparse.  The lid fissures are long with eversion of the lateral portion of the lower eyelid.  The eyelashes are bushy.  Nystagmus and strabismus have been reported.

Systemic Features: 

Only a small number of individuals with Kabuki syndrome 2 have been reported and the phenotype is incompletely described.  Most of the features in type 2 are similar to those in type 1 with defects in multiple organs.  There are often cardiac malformations including septal defects.  Otitis media and hearing loss are common.  The pinnae are large and cupped.  A highly arched or cleft palate may be present and the teeth are usually small.  The joints are highly mobile and general hypotonia is often present. The fifth finger is often short and clinodactylous.  Persistent fetal fingerpads are common.  The amount of intellectual disability varies considerably with some patients functioning normally.  Urogenital anomalies are less common than found in Kabuki syndrome 1 and anal malformations do not seem to be a feature.

Genetics

Kabuki syndrome 2 is an X-linked disorder, usually as the result of a mutation in the KDM6A gene (Xp11.3).   Patients with the X-linked form of Kabuki represent about 5-10% of cases.   

Kabuki syndrome 1 (147920) is an autosomal dominant condition caused by heterozygous mutations in the KMT2D gene but remaining heterogeneity is suggested by the fact that a substantial proportion (30%) of individuals with Kabuki syndrome features has neither of these mutations.

In a 3 generation family two males had the typical Kabuki phenotype whereas their mother and grandmother (all had the KMT2D mutation) had various attenuated features.

Treatment
Treatment Options: 

Management guidelines are available (Management of Kabuki Syndrome).

References
Article Title: 

Molecular analysis, pathogenic mechanisms, and readthrough therapy on a large cohort of Kabuki syndrome patients

Micale L, Augello B, Maffeo C, Selicorni A, Zucchetti F, Fusco C, De Nittis P, Pellico MT, Mandriani B, Fischetto R, Boccone L, Silengo M, Biamino E, Perria C, Sotgiu S, Serra G, Lapi E, Neri M, Ferlini A, Cavaliere ML, Chiurazzi P, Monica MD, Scarano G, Faravelli F, Ferrari P, Mazzanti L, Pilotta A, Patricelli MG, Bedeschi MF, Benedicenti F, Prontera P, Toschi B, Salviati L, Melis D, Di Battista E, Vancini A, Garavelli L, Zelante L, Merla G. Molecular analysis, pathogenic mechanisms, and readthrough therapy on a large cohort of Kabuki syndrome patients. Hum Mutat. 2014 Jul;35(7):841-50.

PubMed ID: 
24633898

Kabuki Syndrome 1

Clinical Characteristics
Ocular Features: 

The facial features and specifically the periocular anomalies are diagnostic and responsible for the eponymic designation (resembling the make-up of actors of a Japanese theatrical form known as Kabuki). The lid fissures are long and narrow and the lateral third of the lower lids are often everted.  The eyebrows are highly-arched and broad with some sparsity especially in the lateral portion.  The eyelashes are thick and ptosis is often noted. Strabismus may be present.  Blue sclerae have been reported.

Some patients may have extreme microphthalmia.

Systemic Features: 

Post-natal growth delay and short stature are present as a result of anomalies in the vertebrae often with secondary scoliosis.  Persistence of the fetal fingertip pads is common. Hypotonia and joint hypermobility have been noted and some degree of intellectual disability is common.  Seizures have been reported but these are not common. Cleft lip and palate are seen in about a third of patients and the palate is highly arched in about 75%.  The teeth are small, frequently malformed and widely spaced.  Feeding difficulties are common.  Anal anomalies such as imperforate anus, anovestibular fistulas, and an anteriorly placed opening may be present, especially in females.  A small penis, hypospadias, and cryptorchidism are common in males.

An ill-defined immune deficit seems to be a common feature as evident by susceptibility to infections, primarily otitis media in infants and later recurrent sinopulmonary infections.   The majority of patients have hypogammaglobulinemia with a variable pattern of antibody abnormalities resembling common variable immune deficiency and especially low levels of serum IgA.  

Hearing loss is seen in nearly half of patients, some of which is no doubt due to recurrent otitis media but CT radiography has demonstrated dysplastic morphology of inner ear structures and the petrous bone.  The ears are large and cupped and preauricular pits may be present as well.

Biliary atresia and a variety of morphological anomalies of the kidney have been reported.  Renal failure can occur.  Perhaps as many as 58% of patients have congenital heart defects, mostly septal in location. 

Genetics

Heterozygous mutations in KMT2D (12q13.12) (also called MLL2) are responsible for Kabuki syndrome 1 but parental transmission to offspring is rare and the majority of patients occur sporadically.  There is also an X-linked form (Kabuki 2) caused by mutations in KDM5A (Xp11.3).  Insufficient clinical data regarding the X-linked phenotype so far has precluded the ability to distinguish the two disorders without genotyping.

Residual genetic heterogeneity remains, however, as a substantial proportion of patients do not have mutations in the two mutant genes known.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

There is no general treatment for this condition.  Management guidelines are available (Management of Kabuki Syndrome).

References
Article Title: 

MLL2 and KDM6A mutations in patients with Kabuki syndrome

Miyake N, Koshimizu E, Okamoto N, Mizuno S, Ogata T, Nagai T, Kosho T, Ohashi H, Kato M, Sasaki G, Mabe H, Watanabe Y, Yoshino M, Matsuishi T, Takanashi J, Shotelersuk V, Tekin M, Ochi N, Kubota M, Ito N, Ihara K, Hara T, Tonoki H, Ohta T, Saito K, Matsuo M, Urano M, Enokizono T, Sato A, Tanaka H, Ogawa A, Fujita T, Hiraki Y, Kitanaka S, Matsubara Y, Makita T, Taguri M, Nakashima M, Tsurusaki Y, Saitsu H, Yoshiura K, Matsumoto N, Niikawa N. MLL2 and KDM6A mutations in patients with Kabuki syndrome. Am J Med Genet A. 2013 Sep;161A(9):2234-43. 

PubMed ID: 
23913813

Kaufman Oculocerebrofacial Syndrome

Clinical Characteristics
Ocular Features: 

Alterations in the morphology of periocular structures is the most consistent ocular feature.  These include epicanthal folds, upward-slanting lid fissures, ptosis, blepharophimosis, sparse eyebrows, and telecanthus.  However, pale optic discs, iris colobomas, microcornea, strabismus, nystagmus, and hypertelorism are variably present. 

Systemic Features: 

There is both intrauterine and postnatal growth retardation.  Hypotonia is often noted along with general psychomotor delays.  Neonatal respiratory distress and laryngeal stridor may be present.  The intellectual disability can be severe.  Corpus callosum aplasia and hypoplasia have been reported.  Microcephaly and brachycephaly with delayed suture closure are features.  The face is long and narrow and the mouth is disproportionally large.  A high arched palate can be present and the pinnae are often deformed, posteriorly rotated and may be accompanied by preauricular skin tags. The teeth appear widely spaced (diastema) and the lower jaw is underdeveloped.

Genetics

Kaufman BPIDS syndrome results from homozygous or compound heterozygous mutations in the UBE3B gene (12q23).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No general treatment is available although repair of some specific malformations is possible.

References
Article Title: 

Deficiency for the ubiquitin ligase UBE3B in a blepharophimosis-ptosis-intellectual-disability syndrome

Basel-Vanagaite L, Dallapiccola B, Ramirez-Solis R, Segref A, Thiele H, Edwards A, Arends MJ, Miro X, White JK, Desir J, Abramowicz M, Dentici ML, Lepri F, Hofmann K, Har-Zahav A, Ryder E, Karp NA, Estabel J, Gerdin AK, Podrini C, Ingham NJ, Altmuller J, Nurnberg G, Frommolt P, Abdelhak S, Pasmanik-Chor M, Konen O, Kelley RI, Shohat M, Nurnberg P, Flint J, Steel KP, Hoppe T, Kubisch C, Adams DJ, Borck G. Deficiency for the ubiquitin ligase UBE3B in a blepharophimosis-ptosis-intellectual-disability syndrome. Am J Hum Genet. 2012 Dec 7;91(6):998-1010.

PubMed ID: 
23200864

An oculocerebrofacial syndrome

Kaufman RL, Rimoin DL, Prensky AL, Sly WS. An oculocerebrofacial syndrome. Birth Defects Orig Artic Ser. 1971 Feb;7(1):135-8.

PubMed ID: 
5006210

Jackson-Weiss Syndrome

Clinical Characteristics
Ocular Features: 

The facial malformation such as the flattened midface with maxillary hypoplasia leads to shallow orbits with the result that the eyes appear proptotic.  Some but not all individuals have strabismus, usually exotropia.  Optic atrophy has not been reported. 

Systemic Features: 

Infants usually present at birth with skull deformities resembling some variant of acrocephalosyndactyly.  Some or all of the skull sutures may be fused.  In some individuals craniectomy is necessary while others have normal brain development.  Few patients have evidence of abnormal neurological development and psychometric testing reveals IQ's in the normal range.  The midface is flattened with sometimes severe maxillary hypoplasia.  No hand deformities are present. 

There may be cutaneous syndactyly of the second and third toes.  Variable tarsal fusion is often present. The great toe may be abnormally broad and deviated medially.  The first metatarsals and proximal phalanges of the great toes are generally broad.

The phenotype is highly variable and even among individuals in genetically more homogeneous populations such as the Old Order Amish the range of facial, skull, and digital anomalies include features found among all of the craniosynostosis syndromes except for Apert syndrome.

Genetics

Heterozygous mutations in the FGFR2 gene (10q26.13) are likely responsible for this autosomal dominant condition. 

Other forms of craniosynostosis in which mutations in FGFR2 have been found are: Beare-Stevenson Syndrome (123790), Crouzon Syndrome (123500), Pfeiffer Syndrome (101600), Apert Syndrome (101200), and Saethre-Chotzen Syndrome (101400).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

There is no treatment beyond surgical correction of selected malformations. The risk of exposure keratitis requires constant vigilance and appropriate corneal lubrication.

References
Article Title: 

Cranial Dysinnervation Disorders with Strabismus and Arthrogryposis

Clinical Characteristics
Ocular Features: 

Strabismus and/or ophthalmoplegia are important features of a group of conditions known as cranial dysinnervation disorders.  Ptosis, Duane syndrome, V pattern exotropia and various degrees of ophthalmoplegia may be seen.  There may be considerable asymmetry in the manifestations in the two eyes.  Epicanthal folds, blepharophimosis, and hypermetropia are sometimes present.  Some patients have corneal leukomas, keratoglobus, high corneal astigmatism, and dysplastic optic disks. 

A pigmentary retinopathy and folds in the macula with an abnormal ERG has been reported.  Subnormal vision has been reported in some patients.

Systemic Features: 

Patients are often short in stature with pectus excavatum, spine stiffness, highly arched palate, and club feet.  Limited forearm rotation and wrist extension may be present.  The fingers appear long and often have contractures while the palmar and phalangeal creases may be absent.  Camptodactyly and clinodactyly are common.  Deep tendon reflexes are often hyporeactive and decreased muscle mass has been noted.  The muscles seem "firm" to palpation.  Restrictive lung disease has been reported.  Hearing loss is experienced by some individuals.

Genetics

Distal arthrogryposis type 5D is caused by homozygous or compound heterozygous mutations in the ECEL1 gene located at 2q36.  However, a similar phenotype (albeit with more severe ocular manifestations) results from heterozygous mutations in PIEZO2 (18p11).  Heterozygous mutations in the PIEZO2 gene have also been reported to cause distal arthrogryposis type 3 (Gordon syndrome [114300]) and Marden-Walker syndrome (248700) and all of these may be simply phenotypical variations of the same disorder.

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

There is no treatment for this condition.  Patients with subnormal vision may benefit from low vision aids and selective surgery may be helpful in reducing the physical restrictions from physical deformities.

References
Article Title: 

Mutations in PIEZO2 cause Gordon syndrome, Marden-Walker syndrome, and distal arthrogryposis type 5

McMillin MJ, Beck AE, Chong JX, Shively KM, Buckingham KJ, Gildersleeve HI, Aracena MI, Aylsworth AS, Bitoun P, Carey JC, Clericuzio CL, Crow YJ, Curry CJ, Devriendt K, Everman DB, Fryer A, Gibson K, Giovannucci Uzielli ML, Graham JM Jr, Hall JG, Hecht JT, Heidenreich RA, Hurst JA, Irani S, Krapels IP, Leroy JG, Mowat D, Plant GT, Robertson SP, Schorry EK, Scott RH, Seaver LH, Sherr E, Splitt M, Stewart H, Stumpel C, Temel SG, Weaver DD, Whiteford M, Williams MS, Tabor HK, Smith JD, Shendure J, Nickerson DA; University of Washington Center for Mendelian Genomics, Bamshad MJ. Mutations in PIEZO2 cause Gordon syndrome, Marden-Walker syndrome, and distal arthrogryposis type 5. Am J Hum Genet. 2014 May 1;94(5):734-44.

PubMed ID: 
24726473

Nanophthalmos 1

Clinical Characteristics
Ocular Features: 

The axial length ranges from 17.55 to 19.28 mm with a mean of 18.13 mm.  The mean refractive error was +9.88 in one reported family but ranged from +7.25 to +13.00.  More than half of reported patients have developed angle closure glaucoma.  Patients are at risk for strabismus and amblyopia.  Choroidal detachments are often seen in nanophthalmic eyes.

Histological studies on full thickness sclerotomy tissue from a nanophthalmic eye showed frayed and split collagen fibrils with lightly stained cores predominantly in the sclera and episcleral regions which may contribute to the anatomical changes.

Systemic Features: 

None have been reported.

Genetics

No mutation has been described but this autosomal dominant condition maps to 11p.

Another type of autosomal dominant nanophthalmos (NNO3) (611897) maps to 2q22-q14, and yet another, nanophthalmos AD, results from mutations in TMEM98.

Nanophthalmos may also be inherited in an autosomal recessive pattern.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Lifelong monitoring is required because of the risk of angle closure.  Intraocular surgery such as lens extractions carries a high risk of complications.

References
Article Title: 

Orofaciodigital Syndrome, Type VI

Clinical Characteristics
Ocular Features: 

Hypertelorism and epicanthal folds have been described.  Some patients have nystagmus and strabismus. Ocular apraxia and difficulties in smooth visual pursuit may be present.   

Systemic Features: 

Polydactyly of the hands is a common feature.  The central metacarpal is often Y-shaped leading to ‘central polydactyly’.  The large toes may be bifid.  Cognitive deficits are common and some patients have been considered mentally retarded.  The ears are low-set and rotated posteriorly.  Some patients have a conductive hearing loss.  Oral anomalies may include a lobed tongue, lingual and sublingual hemartomas, micrognathia, clefting, and multiple buccoalveolar frenula.  Congenital heart anomalies, micropenis, and cryptorchidism have been reported.  Tachypnea and tachycardia have been noted.  Some patients have some degree of skeletal dysplasia and many individuals are short in stature.

The presence of cerebellar abnormalities such as hypoplasia (including absence) of the vermis may help to distinguish type VI from other forms of OFDS.  Hypothalamic dysfunction may be responsible for poor temperature regulation (hyperthermia). The ‘molar tooth sign’ seen on brain MRIs in Joubert syndrome (213300) is also present in OFDS VI. 

Genetics

This is a rare condition with limited family information.  Parents in one family were consanguineous, and multiple affected sibs in other families suggest this may be an autosomal recessive condition.  Homozygous mutations in TMEM216 have been found. Other patients have mutations in C5orf42.

Many of the clinical features in OFDS VI are also found among individuals with Joubert (213300) and Meckel (249000) syndromes that also sometimes have mutations in the TMEM216 and C5orf42 genes.  Some consider all of these conditions to be members of a group of overlapping disorders called ciliopathies or ciliary dyskinesias.   

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No specific treatment is available for this syndrome but individual signs and symptoms may need treatment.

References
Article Title: 

C5orf42 is the major gene responsible for OFD syndrome type VI

Lopez E, Thauvin-Robinet C, Reversade B, Khartoufi NE, Devisme L, Holder M, Ansart-Franquet H, Avila M, Lacombe D, Kleinfinger P, Kaori I, Takanashi JI, Le Merrer M, Martinovic J, No?'l C, Shboul M, Ho L, G?oven Y, Razavi F, Burglen L, Gigot N, Darmency-Stamboul V, Thevenon J, Aral B, Kayserili H, Huet F, Lyonnet S, Le Caignec C, Franco B, Rivi?(r)re JB, Faivre L, Atti?(c)-Bitach T. C5orf42 is the major gene responsible for OFD syndrome type VI. Hum Genet. 2013 Nov 1. [Epub ahead of print].

PubMed ID: 
24178751

Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes

Valente EM, Logan CV, Mougou-Zerelli S, Lee JH, Silhavy JL, Brancati F, Iannicelli M, Travaglini L, Romani S, Illi B, Adams M, Szymanska K, Mazzotta A, Lee JE, Tolentino JC, Swistun D, Salpietro CD, Fede C, Gabriel S, Russ C, Cibulskis K, Sougnez C, Hildebrandt F, Otto EA, Held S, Diplas BH, Davis EE, Mikula M, Strom CM, Ben-Zeev B, Lev D, Sagie TL, Michelson M, Yaron Y, Krause A, Boltshauser E, Elkhartoufi N, Roume J, Shalev S, Munnich A, Saunier S, Inglehearn C, Saad A, Alkindy A, Thomas S, Vekemans M, Dallapiccola B, Katsanis N, Johnson CA, Atti?(c)-Bitach T, Gleeson JG. Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes. Nat Genet. 2010 Jul;42(7):619-25.

PubMed ID: 
20512146

Nystagmus 4, AD

Clinical Characteristics
Ocular Features: 

Abnormal eye movements generally are present as early as 1 to 2 years of life and are stable but they are not congenital in origin.  Eye movement anomalies are somewhat variable and unusual with gaze-paretic nystagmus and poor or absent smooth pursuit most common.  The nystagmus may also be upbeat in direction.  A poor vestibuloocular reflex might be part of this eye movement complex.  Vision in many individuals is normal but mildly decreased in others.  Strabismus (primarily esotropia and exophoria) is common.

Systemic Features: 

Mild "balance problems" have been reported by some patients.  One individual reported intermittent dizziness.  No other cerebellar signs are present.  Neuroimaging found no CNS abnormalities in one patient. Seizures and ataxia were separately reported in two persons.

Genetics

The single reported family shows a transmission pattern consistent with autosomal dominant inheritance.  A locus cosegregating with the condition has been found at 13q31-q33 but no specific mutation has been identified.

Only one family has been reported and additional information is needed to document the uniqueness of this disorder.

Other autosomal dominant congenital nystagmus conditions in this database are: NYS2, NYS3, and NYS7.

Three X-linked isolated congenital nystagmus conditions may also be found in this database: NYS1, NYS5, and NYS6.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment has been reported.  Low vision aids might be helpful for school-age children.

References
Article Title: 

Nystagmus 2, Congenital, AD

Clinical Characteristics
Ocular Features: 

Pendular and sometimes jerk nystagmus are often present at birth.  Other patients are diagnosed between 3 and 6 months.  Vision is usually stable in the range of 20/30 to 20/100 with most patients having 20/50.  Between 35% and 50% of individuals have strabismus as well.

Systemic Features: 

None have been reported.

Genetics

Familial cases have an autosomal dominant transmission pattern.  No specific mutation has been found but strong linkage with a region at 6p12 has been reported.

Several additional autosomal dominant forms of congenital nystagmus have been linked to chromosomal regions 7p11 (NYS3, 608345), 13q (NYS4, 193003), 1q31.3-q32.1, and NYS7 (614826).  Autosomal recessive inheritance has been proposed for several pedigrees but adequate documentation is lacking (see 257400).

This database also contains 3 types of congenital nystagmus inherited in X-linked recessive patterns: NYS1, NYS5, and NYS6.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Nystagmus cannot be cured.  However, there are several treatments that can help.  Glasses and contact lenses, and, occasionally, extraocular muscle surgery may be helpful.  The latter should be considered especially when patients adopt a consistent head position for best vision.  This avoids long-term secondary changes in neck muscles and many individuals experience an improvement of two or more lines in visual acuity.  Low vision aids should be offered.

References
Article Title: 

Pages

Subscribe to RSS - strabismus