strabismus

Albinism, Oculocutaneous, Type VI

Clinical Characteristics
Ocular Features: 

Nystagmus is usually present from birth and visual acuity is in the range of 20/100.  There is marked hypopigmentation in the retina and the iris often transilluminates.  OCT usually shows foveal flattening consistent with hypoplasia.  Most patients experience severe photophobia and many have strabismus.

Systemic Features: 

There is usually complete loss or a severe reduction of melanin in skin, hair, and eyes.  Hair color is blond but may become tinged with brown in older individuals.  The skin may have pigmented nevi and has a tendency to tan in some patients.

Genetics

This is an autosomal recessive disorder resulting from mutations in SLC24A5 (15q21.1).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No effective treatment is available.  Visual function can be improved with low vision aids.

References
Article Title: 

SLC24A5 Mutations are Associated with Non-Syndromic Oculocutaneous Albinism

Morice-Picard F, Lasseaux E, Fran?ssois S, Simon D, Rooryck C, Bieth E, Colin E, Bonneau D, Journel H, Walraedt S, Leroy BP, Meire F, Lacombe D, Arveiler B. SLC24A5 Mutations are Associated with Non-Syndromic Oculocutaneous Albinism. J Invest Dermatol. 2013 Aug 28. [Epub ahead of print] PubMed PMID: 23985994.

PubMed ID: 
23985994

Myasthenic Syndromes, Congenital, Including AChR Deficiency

Clinical Characteristics
Ocular Features: 

The congenital myasthenic syndromes are genetically and clinically heterogeneous.  Ptosis is the outstanding ocular sign and virtually always present.  Strabismus and ophthalmoplegia are less common.  These signs are not helpful in the differential diagnosis of the many types of congenital myasthenia.

Some degree of ptosis is usually evident during the first 6 months of life.  By about 2 years of age strabismus and ophthalmoparesis are apparent but this sequence is highly variable.

Systemic Features: 

This is a group of nonprogressive disorders most often associated with acetylcholine receptor (AChR) defects at the neuromuscular junction.  An early sign may be decreased fetal movements.  Generalized weakness, a weak cry, and hypotonia are evident at birth.  Easy fatigability and limb weakness are noted in early childhood and affected children have difficulty running. Facial weakness, dysarthria, weakness of the tongue, and dysphagia are often present and many patients have respiratory difficulties. Motor development can be delayed.  Acute illnesses may exacerbate muscle weakness.

Genetics

This is the most common form of the congenital myasthenic syndromes. It is an autosomal recessive disorder of the postsynaptic type, so called because the mutations occur in genes that encode the subunits of acetylcholine receptors: CHRNE(17P13.2), and CHRNB1(17p13.1).  A similar phenotype results from mutations in MUSK (9p31.3) which is critical for synaptic differentiation.

Mutations in RAPSN(11p11.2), whose protein product is important for stabilization of the acetylcholine receptors at the endplate, may result in a similar phenotype but may also produce the fetal akinesia deformation sequence.  This lethal condition is often associated with severe respiratory disease and dysmorphism including limb contractures, micrognathia, and feeding difficulties.  Nothing is known about the ocular signs.

Another autosomal recessive congenital myasthenic syndrome (610542), CMSTA1, has a somewhat later onset (adolescence) and weakness in a limb girdle distribution but no ptosis or oculomotor problems.  Tubular aggregates of muscle fibers can be seen on biopsy.

Presynaptic autosomal recessive forms of congenital myasthenia such as CMS20 (617143) caused by mutations in SLC5A7 (2q12) and CMS21 (617239) secondary to mutations in SLC18A3 (10q11.23) with severe episodic apnea and ocular signs of ptosis and ophthalmoparesis have been reported.

Other postsynaptic forms of congenital myasthenia are the fast-channel type (FCCNS) (608930) and the slow channel type (SCCMS) (601462).  Ophthalmoparesis occurs early in both types.

The classification of congenital myasthenia syndromes is under construction.  In the case of many types only a single or very few families have been reported.   While the clinical manifestations involve alterations in the neuromuscular junnction, some result from heterozygous mutations while others are due to homozygous changes.  The defect may reside in presynaptic, synaptic, or postsynaptic mechanisms.  For a discussion and comprehensive listing of the various types see 601462.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Cholinesterase inhibitor drugs can be highly beneficial in some forms of the disease but genotyping is necessary before attempting pharmacological therapy.  Frequent ventilation and enteric feeding may be helpful for selected individuals.  Individuals should be protected from acute illnesses, especially respiratory infections.

References
Article Title: 

Impaired Presynaptic High-Affinity Choline Transporter Causes a Congenital Myasthenic Syndrome with Episodic Apnea

Bauche S, O'Regan S, Azuma Y, Laffargue F, McMacken G, Sternberg D, Brochier G, Buon C, Bouzidi N, Topf A, Lacene E, Remerand G, Beaufrere AM, Pebrel-Richard C, Thevenon J, El Chehadeh-Djebbar S, Faivre L, Duffourd Y, Ricci F, Mongini T, Fiorillo C, Astrea G, Burloiu CM, Butoianu N, Sandu C, Servais L, Bonne G, Nelson I, Desguerre I, Nougues MC, Boeuf B, Romero N, Laporte J, Boland A, Lechner D, Deleuze JF, Fontaine B, Strochlic L, Lochmuller H, Eymard B, Mayer M, Nicole S. Impaired Presynaptic High-Affinity Choline Transporter Causes a Congenital Myasthenic Syndrome with Episodic Apnea. Am J Hum Genet. 2016 Sep 1;99(3):753-61.

PubMed ID: 
27569547

Congenital myasthenic syndromes

Hanta?O D, Richard P, Koenig J, Eymard B. Congenital myasthenic syndromes. Curr Opin Neurol. 2004 Oct;17(5):539-51. Review.

PubMed ID: 
15367858

Williams Syndrome

Clinical Characteristics
Ocular Features: 

Blue irides (77%) and a lacey or stellate pattern (74%) of the iris are characteristic.  The stroma appears coarse with radial or cartwheel striations.  The iris collarette is usually absent or anomalous.  Features of the Peters' anomaly may be present.  The periorbital tissues are described as 'full' and prominent.  Strabismus (usually esotropia) occurs in more than half of patients.  Retinal vessel tortuosity is present in 22% of patients.  Cataracts may be found in younger individuals but are uncommon. Hyperopia is the most common refractive error.  Keratoconus has been described in at least 3 patients.

Systemic Features: 

The phenotype is variable, likely depending upon the size of the deletion.  Cardiovascular disease, primarily hypertension and large vessel stenosis, are among the most important features.  The elastin arteriopathy lead to thickened arterial walls with peripheral pulmonary stenosis and supravalvular aortic stenosis.  The facies is considered unique with bitemporal narrowing, a wide mouth, full lips, malocclusion, small jaw, and prominent earlobes.  The teeth are small and widely spaced.  Connective tissue abnormalities include joint hyperextensibility, hernias, lax skin, hypotonia, and bowel/bladder diverticulae.  Small birth size is common and infants often fail to thrive but at puberty patients can experience a growth spurt.  Ultimate height in adults is usually in the third centile.

Vocal cord anomalies and paralysis can result in a hoarse voice.  A sensorineural hearing loss is common among adults but hyperacusis is often present in young children.

Hypercalcemia and hypercalciuria are common and some (10%) have hypothyroidism.

Most individuals have some cognition difficulties and delays but normal intelligence has also been reported.  Patient personalities consist of anxiety, attention deficit disorder, marked friendliness and a high level of empathy.  Visiospatial construction is often impaired.  Most adults are unable to live independently.

Genetics

This is a deletion syndrome but included in this database because the major features are due to the loss of a single gene (ELN).  The deletion segment consists of 1.4-1.8 Mb at 7q11.23 containing as many as 28 genes.   Most cases occur sporadically but parent-child transmission and affected siblings have been reported.  The recurrence risk is low.

Increased tortuosity of the retinal arterioles is also a feature of Fabry disease (301500) and of a condition known as isolated retinal arteriolar tortuosity (611773, 180000).

Treatment
Treatment Options: 

Feeding issues should be addressed early in infants who fail to thrive.  Early intervention with speech and physical therapy plus special education can be helpful.  Psychological evaluations may help in managing behavioral issues.

Hypertension can often be managed medically but surgery may be required for vascular stenoses.   Hypercalcemia and hypothyroidism often respond to medical therapy. Strabismus, vessel narrowing, and valvular malfunctions can be treated surgically.

References
Article Title: 

The iris in Williams syndrome

Holmstrom G, Almond G, Temple K, Taylor D, Baraitser M. The iris in Williams syndrome. Arch Dis Child. 1990 Sep;65(9):987-9.

PubMed ID: 
2221973

Ocular findings of Williams' syndrome

Hotta Y, Kishishita H, Wakita M, Inagaki Y, Momose T, Kato K. Ocular findings of Williams' syndrome. Acta Paediatr Scand. 1990 Aug-Sep;79(8-9):869-70.

PubMed ID: 
2239289

Mannosidosis, Alpha B

Clinical Characteristics
Ocular Features: 

Many (probably most) patients have lens opacities and some have corneal opacities as well.  Nystagmus and strabismus have been described.  Pigmentary changes of a mottled nature can be present in the posterior pole and may be associated with retinal vessel attenuation and diminished ERG responses.  Retinal thinning can be demonstrated.  A mixture of hypo- and hyperautofluorescence is often visible.  Mild optic atrophy has been seen.  There is evidence for progressive visual loss, even late in life.  Eyebrows appear thick.    

Systemic Features: 

Mannosidosis is a highly variable multisystem disorder.  Onset may be in infancy but in other patients symptoms appear later in the first decade.  Progression of disease is more rapid in individuals with early onset (type 3) with rapid mental, motor deterioration and early death.  The characteristic coarse facial features usually are evident later in milder cases (types 1 and 2) that have mild or moderate intellectual disabilities.  Regardless, mannosidosis is relentlessly progressive with mental deterioration and motor disabilities.  Ataxia is a common feature.  Dental anomalies (diastema), large ears, macroglossia, joint stiffness,, hepatosplenomegaly, enlarged head circumference, hearing loss (sensorineural), increased susceptibility to infections, dysarthria, and spondylolysis may be present.

Genetics

Alpha-mannosidoosis is an autosomal recessive lysosomal storage disorder resulting from mutations in the MAN2B1 gene (19p13.2).  There is another form of mannosidosis known as beta A  (248510) caused by mutations in MANBA but ocular features have not been reported.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Prompt treatment for infections is required and prophylactic vaccinations are indicated.  All individuals should be seen annually and assistive devices such as wheel chairs and hearing aids prescribed when needed.

References
Article Title: 

Retinal and optic nerve degeneration in α-mannosidosis

Matlach J, Zindel T, Amraoui Y, Arash-Kaps L, Hennermann JB, Pitz S. Retinal and optic nerve degeneration in a-mannosidosis. Orphanet J Rare Dis. 2018 Jun 1;13(1):88. doi: 10.1186/s13023-018-0829-z.

PubMed ID: 
29859105

Ocular findings in mannosidosis

Arbisser AI, Murphree AL, Garcia CA, Howell RR. Ocular findings in mannosidosis. Am J Ophthalmol. 1976 Sep;82(3):465-71. PubMed PMID: 961797.

PubMed ID: 
961797

Joubert Syndrome and Related Disorders

Clinical Characteristics
Ocular Features: 

Ocular findings like systemic features are highly variable both within and between families.  Vision can be normal but in other patients it is severely reduced to the range of 20/200.  The pupils may respond sluggishly or even paradoxically to light.  ERG recordings have been reported to be normal in some patients, but absent or reduced in others.  The fundus appearance is often normal but in other individuals the pigmentation is mottled, the retinal arterioles are attenuated, and the macula has a cellophane maculopathy.  Drusen and colobomas are sometimes seen in the optic nerve while occasional patients have typical chorioretinal colobomas.  The eyebrows are often highly arched.

The oculomotor system is frequently involved.  Apraxia to some degree is common with most patients having difficulty with smooth pursuit and saccadic movements.  Compensatory head thrusting is often observed.  A pendular nystagmus may be present while esophoria or esotropia is present in many patients.

Systemic Features: 

There is a great deal of clinical heterogeneity in this group of ciliary dyskinesias.  Developmental delays, cognitive impairment, truncal ataxia, breathing irregularities, and behavioral disorders are among the more common features.  Hyperactivity and aggressiveness combined with dependency require constant vigilance and care.  Postaxial polydactyly is a feature of some cases.  Hypotonia is evident at birth.  Liver failure and renal disease develop in many individuals.  Neuroimaging of the midbrain-hindbrain area reveals agenesis or some degree of dysgenesis of the vermis with the 'molar tooth sign' in the isthmus region considered to be a diagnostic sign.  The fourth ventricle is usually enlarged while the cerebellar hemispheres may be hypoplastic.

The facies features are said to be distinctive in older individuals.  The face appears long with frontal prominence due to bitemporal narrowing, the nasal bridge and tip are prominent, the jaw is prominent, the lower lip protrudes, and the corners of the mouth are turned down.

Genetics

This is a clinically and genetically heterogeneous group of disorders with many overlapping features.  Most disorders in this disease category, known as JSRD, are inherited in an autosomal recessive pattern.  Mutations in at least 34 genes have been identified.  One, OFD1 (300804), is located on the X chromosome (Xp22.2).

There are significant clinical similarities to Meckel syndrome (249000) and Smith-Lemli-Opitz syndrome (270400).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Treatment is mostly for specific symptoms such as respiratory distress, renal disease, speech and physical therapy, low vision, and hepatic failure.

References
Article Title: 

Joubert Syndrome: Ophthalmological Findings in Correlation with Genotype and Hepatorenal Disease in 99 Patients Prospectively Evaluated at a Single Center

Brooks BP, Zein WM, Thompson AH, Mokhtarzadeh M, Doherty DA, Parisi M, Glass IA, Malicdan MC, Vilboux T, Vemulapalli M, Mullikin JC, Gahl WA, Gunay-Aygun M. Joubert Syndrome: Ophthalmological Findings in Correlation with Genotype and Hepatorenal Disease in 99 Patients Prospectively Evaluated at a Single Center. Ophthalmology. 2018 Jul 25. pii: S0161-6420(18)30686-9. doi: 10.1016/j.ophtha.2018.05.026. [Epub ahead of print].

PubMed ID: 
30055837

Ophthalmological findings in Joubert syndrome

Sturm V, Leiba H, Menke MN, Valente EM, Poretti A, Landau K, Boltshauser E. Ophthalmological findings in Joubert syndrome. Eye (Lond). 2010 Feb;24(2):222-5.

PubMed ID: 
19461662

Gaze Palsy, Familial Horizontal, with Progressive Scoliosis 1

Clinical Characteristics
Ocular Features: 

Horizontal ophthalmoplegia is the ocular hallmark of this condition.  It is often present at birth with complete lack of horizontal gaze but in other individuals develops sometime in the first decade of life.  Horizontal smooth pursuit, saccades, optokinetic nystagmus, and vestibuloocular responses are lacking.  Vertical pursuit movements are usually intact except for smooth pursuit which is often saccadic.  Pendular nystagmus (usually horizontal) may be present and head shaking accompanies the nystagmus in some patients.  Many patients are orthophoric but some have a mild esotropia and/or vertical deviation.  The degree of convergence is variable.  Amblyopia does not usually occur and vision has been described as normal or near normal in spite of the presence of nystagmus.  Fusion and some degree of stereoacuity are generally present.  Compensatory head motion can effectively mask the horizontal palsy.  The ophthalmoplegia is progressive according to descriptions of some patients.

Some individuals are considered to have Duane retraction syndrome or congenital esotropia before the scoliosis becomes apparent.

Systemic Features: 

Progressive thoracolumbar scoliosis begins early in the first decade of life and may be evident by 2 years of life.  MRI reveals hypoplasia of the pons and cerebellar peduncles and electrophysiology studies provides evidence of abnormal (uncrossed) corticospinal and dorsal column-medial lemniscus pathways.  Cranial nerves VI and III seem to be intact.

Neuroimaging in some patients reveals medullary and pontine atrophy with hypoplasia of facial colliculi.

Genetics

Homozygous mutations in the ROBO3 gene (11q24.2) are responsible for this autosomal recessive disorder.  The ROBO3 protein product is important for normal midline axon crossing in the brainstem. Consanguinity is common among parents.

see Gaze Palsy, Familial Horizontal, with Progressive Scoliosis 2 (617542) for another condition with somewhat similar features.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Scoliosis may require surgical stabilization.  Physical therapy can be beneficial.

References
Article Title: 

Mutations in a human ROBO gene disrupt hindbrain axon pathway crossing and morphogenesis

Jen JC, Chan WM, Bosley TM, Wan J, Carr JR, R?ob U, Shattuck D, Salamon G, Kudo LC, Ou J, Lin DD, Salih MA, Kansu T, Al Dhalaan H, Al Zayed Z, MacDonald DB, Stigsby B, Plaitakis A, Dretakis EK, Gottlob I, Pieh C, Traboulsi EI, Wang Q, Wang L, Andrews C, Yamada K, Demer JL, Karim S, Alger JR, Geschwind DH, Deller T, Sicotte NL, Nelson SF, Baloh RW, Engle EC. Mutations in a human ROBO gene disrupt hindbrain axon pathway crossing and morphogenesis. Science. 2004 Jun 4;304(5676):1509-13.

PubMed ID: 
15105459

Pigmented Paravenous Chorioretinal Atrophy

Clinical Characteristics
Ocular Features: 

This is a rare type of pigmentary retinopathy with few symptoms in many patients.  Pigment clumps in the form of bone spicules in a paravenous distribution appear as young as 1 year of age and may be present congenitally.  The pigment may begin peripherally and is often segmental but eventually progresses centrally along with chorioretinal atrophy involving the majority of the fundus.  For unknown reasons, males are more severely affected than females.  In one family the retinal changes were associated with hyperopia, esotropia and vitreous degeneration (cells and liquefaction).  There is considerable variation in expressivity among patients and the vision and fundus pigmentation can be highly asymmetrical in the two eyes.  ERG abnormalities likewise vary widely with decreased photopic responses in some individuals and complete lack of both scotopic and photopic responses in severely affected eyes.  Decreased night vision is not a symptom.

This is generally considered to be a stationary condition but long term follow up reveals progression of pigmentary changes, chorioretinal atrophy and increasing constriction of the peripheral visual field.  Symptoms of decreased vision may be noted as early as 3 months of age.  Some patients retain vision of 20/20 or 20/30 into midlife whereas others in the first decade already have count fingers vision.  Likewise the size of the visual field varies widely and is not correlated with age.

Systemic Features: 

No systemic abnormalities have been reported.

Genetics

This is an autosomal dominant disorder caused by heterozygous mutations in the crumbs homolog 1 (CRB1) gene (1q31.3).

CRB1 mutations have been identified in other retinal disorders including nanophthalmos with retinitis pigmentosa, pigmented paravenous chorioretinal atrophy (172870), retinitis pigmentosa-12 (600105), and Leber congenital amaurosis 8 (613835).  No consistent retinal phenotype has been found, however.  There is often marked asymmetry between the two eyes and the rate of visual loss varies widely.  Most individuals have some patchy areas of hypoautofluorescence in the posterior pole with variable amounts of pigmentary anomalies from mild speckling to frank bone spicule formation.

   

 

   

 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No effective treatment is available although low vision aids are likely to be helpful in selected patients.

References
Article Title: 

Macular Edema, Autosomal Dominant Cystoid

Clinical Characteristics
Ocular Features: 

Only a few families have been reported.  The macular edema can be traced to retinal capillary leakage throughout the posterior pole as revealed by fluorescein angiography.  Scattered exudates and nerve fiber layer hemorrhages are sometimes seen.  Hyperopia and strabismus are often present as well.  Veils, strands, and white punctate deposits in the vitreous have been described.  Wrinkling of the internal limiting membrane may be present.  The ERG is normal except for elevated rod dark adaptation thresholds.  Light/dark ratios are abnormal on EOG testing and mild dyschromatopsia can be demonstrated.  Patients usually notice problems with their visual acuity in the second decade of life and it can drop to 20/200 at this time with progression to 2/120 - 2/200 in older individuals.  In later stages of the disease a central zone of beaten bronze macular atrophy can be seen.  Surrounding this central atrophy is often an area with pigmentary changes resembling retinitis pigmentosa which can extend into the periphery.

This would seem to be a unique disorder in spite of some similarities to retinitis pigmentosa in which macular cysts are often seen.  The clinical course is distinctly different and the presence of vitreous deposits and hyperopia also can be used as arguments for its separateness.  Molecular DNA evidence showing lack of allelism (Vida infra) is, of course the strongest evidence.

Systemic Features: 

No systemic abnormalities have been reported.

Genetics

This autosomal dominant form of progressive macular dystrophy is linked to a locus at 7p21-p15.  The mutation is close to the RP9 locus causing one type of retinitis pigmentosa but linkage analysis shows the two disorders to be non-allelic.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No specific treatment is available for the macular disease but low vision aids are likely useful, at least early in the disease.

References
Article Title: 

Mowat-Wilson Syndrome

Clinical Characteristics
Ocular Features: 

Most reports of Mowat-Wilson disorders provide only incomplete ocular findings and the full phenotype remains to be described.  Most of the reported findings are part of the facial phenotype, such as downward slanting palpebral fissures, and 'wedge-shaped' eyebrows with the medial portion visibly wider than the temporal region.  Hypertelorism, strabismus and telecanthus have also been noted.  However, optic nerve atrophyor aplasia, RPE atrophy, microphthalmia, ptosis, and cataracts are sometimes present while strabismus is more common.  Iris and other uveal colobomas may be present and at least one patient has been reported with retinal aplasia.  There may be considerable asymmetry in the features among the two eyes.

Systemic Features: 

This is a highly complex dysmorphic developmental disorder with unusual progression of facial features.  Birth weight and length are usually normal but later there is general somatic and mental growth delay with microcephaly (pre- and post natal), short stature, intellectual disability, and epilepsy (70%).  Hypotonia has been noted at birth.  A significant proportion (~50%) of patients have Hirschsprung disease with megacolon.  Congenital heart defects are common, many involving septal openings.  Hypospadias is often present with or without other genitourinary anomalies.  Teeth are often crowded and crooked.  The earlobes may be flattened and may have a central depression.

The facial features are present in early childhood but as they mature the upper half of the nasal profile becomes convex, while the nasal tip becomes longer and overhangs the philtrum.  The eyes appear more deeply set.  The chin lengthens and prognathism becomes apparent.  IQ levels cannot be determined but many individuals exhibit behavioral or emotional disturbances.

Genetics

Heterozygous mutations in ZEB2 (2q22.3) are responsible for most cases (81%) of this disorder.  A large number of molecular mutations, many of the nonsense type, have been reported. About 2-4% of patients have cytogenetic alterations involving the 2q22 region.

Another disorder with microcephaly, intellectual disability and Hirschsprung disease is Goldberg-Shprintzen syndrome (609460) with mutations in the KIAA1279 gene.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Treatment may be directed at specific defects but there is no treatment for the general disorder. Individuals can live to adulthood. Treatment is largely symptomatic.  Physical and speech treatment can be helpful if initiated early.

References
Article Title: 

Phenotype and genotype of 87 patients with Mowat-Wilson syndrome and

Ivanovski I, Djuric O, Caraffi SG, Santodirocco D, Pollazzon M, Rosato S,
Cordelli DM, Abdalla E, Accorsi P, Adam MP, Ajmone PF, Badura-Stronka M, Baldo C,
Baldi M, Bayat A, Bigoni S, Bonvicini F, Breckpot J, Callewaert B, Cocchi G,
Cuturilo G, De Brasi D, Devriendt K, Dinulos MB, Hjortshoj TD, Epifanio R,
Faravelli F, Fiumara A, Formisano D, Giordano L, Grasso M, Gronborg S, Iodice A,
Iughetti L, Kuburovic V, Kutkowska-Kazmierczak A, Lacombe D, Lo Rizzo C, Luchetti
A, Malbora B, Mammi I, Mari F, Montorsi G, Moutton S, Moller RS, Muschke P,
Nielsen JEK, Obersztyn E, Pantaleoni C, Pellicciari A, Pisanti MA, Prpic I,
Poch-Olive ML, Raviglione F, Renieri A, Ricci E, Rivieri F, Santen GW, Savasta S,
Scarano G, Schanze I, Selicorni A, Silengo M, Smigiel R, Spaccini L, Sorge G,
Szczaluba K, Tarani L, Tone LG, Toutain A, Trimouille A, Valera ET, Vergano SS,
Zanotta N, Zenker M, Conidi A, Zollino M, Rauch A, Zweier C, Garavelli L.
Phenotype and genotype of 87 patients with Mowat-Wilson syndrome and
recommendations for care
. Genet Med. 2018 Jan 4. doi: 10.1038/gim.2017.221. [Epub
ahead of print].

PubMed ID: 
29300384

Clinical spectrum of eye malformations in four patients with Mowat-Wilson syndrome

Bourchany A, Giurgea I, Thevenon J, Goldenberg A, Morin G, Bremond-Gignac D, Paillot C, Lafontaine PO, Thouvenin D, Massy J, Duncombe A, Thauvin-Robinet C, Masurel-Paulet A, Chehadeh SE, Huet F, Bron A, Creuzot-Garcher C, Lyonnet S, Faivre L. Clinical spectrum of eye malformations in four patients with Mowat-Wilson syndrome. Am J Med Genet A. 2015 Apr 21. [Epub ahead of print]

PubMed ID: 
25899569

The behavioral phenotype of Mowat-Wilson syndrome

Evans E, Einfeld S, Mowat D, Taffe J, Tonge B, Wilson M. The behavioral phenotype of Mowat-Wilson syndrome. Am J Med Genet A. 2012 Feb;158A(2):358-66. doi: 10.1002/ajmg.a.34405.

PubMed ID: 
22246645

Mowat-Wilson syndrome: facial phenotype changing with age: study of 19 Italian patients and review of the literature

Garavelli L, Zollino M, Mainardi PC, Gurrieri F, Rivieri F, Soli F, Verri R, Albertini E, Favaron E, Zignani M, Orteschi D, Bianchi P, Faravelli F, Forzano F, Seri M, Wischmeijer A, Turchetti D, Pompilii E, Gnoli M, Cocchi G, Mazzanti L, Bergamaschi R, De Brasi D, Sperandeo MP, Mari F, Uliana V, Mostardini R, Cecconi M, Grasso M, Sassi S, Sebastio G, Renieri A, Silengo M, Bernasconi S, Wakamatsu N, Neri G. Mowat-Wilson syndrome: facial phenotype changing with age: study of 19 Italian patients and review of the literature. Am J Med Genet A. 2009 Mar;149A(3):417-26. Review.

PubMed ID: 
19215041

Clinical and mutational spectrum of Mowat-Wilson syndrome

Zweier C, Thiel CT, Dufke A, Crow YJ, Meinecke P, Suri M, Ala-Mello S, Beemer F, Bernasconi S, Bianchi P, Bier A, Devriendt K, Dimitrov B, Firth H, Gallagher RC, Garavelli L, Gillessen-Kaesbach G, Hudgins L, K?SS?SSri?SSinen H, Karstens S, Krantz I, Mannhardt A, Medne L, M?ocke J, Kibaek M, Krogh LN, Peippo M, Rittinger O, Schulz S, Schelley SL, Temple IK, Dennis NR, Van der Knaap MS, Wheeler P, Yerushalmi B, Zenker M, Seidel H, Lachmeijer A, Prescott T, Kraus C, Lowry RB, Rauch A. Clinical and mutational spectrum of Mowat-Wilson syndrome. Eur J Med Genet. 2005 Apr-Jun;48(2):97-111

PubMed ID: 
16053902

Branchiooculofacial Syndrome

Clinical Characteristics
Ocular Features: 

Microphthalmos, or anophthalmia, and an imperforate nasolacrimal duct are the primary ocular features in this syndrome.  The nasolacrimal ducts may open onto the skin adjacent to the lacrimal sac.  Uveal tract and optic nerve colobomas are present in nearly half of patients. Strabismus is sometimes seen.  Cataracts are present in about 25% of patients as well.  The lid fissures are often slanted upwards.

Systemic Features: 

A cleft lip and/or palate are common features.  There may be preauricular pits, lip pits, a highly arched palate, and hypodontia.  Some individuals have subcutaneous cysts in the scalp.  Postauricular cervical branchial and supraauricular defects are often present as well.  It is not unusual to see some skin discoloration behind the ears.  The nasal bridge is broad, the top of the nose is flattened, and the philtrum is often short.  The ears are often enlarged or malformed and in 70% of patients there is some hearing loss which is usually conductive in origin but neurosensory deafness has also been documented.  Premature graying of hair is common.  Kidney malformations and dysfunction have been documented.  Mental function is usually normal.  Preaxial polydactyly is an uncommon feature.

Genetics

This is an autosomal dominant disorder resulting from mutations in the TFAP2A gene (6p34.3).  Both deletions and insertions have been identified.  However, 50-60% of patients have de novo mutations.  As in many autosomal dominant disorders there is considerable clinical heterogeneity and few patients have all of the signs.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Treatment requires a multidisciplinary approach with oculoplastic, ophthalmic, and ENT surgeons.  Physical, speech, hearing, and learning specialists can be helpful.

References
Article Title: 

Further delineation of the branchio-oculo-facial syndrome

Lin AE, Gorlin RJ, Lurie IW, Brunner HG, van der Burgt I, Naumchik IV, Rumyantseva NV, Stengel-Rutkowski S, Rosenbaum K, Meinecke P, et al. Further delineation of the branchio-oculo-facial syndrome. Am J Med Genet. 1995 Mar 13;56(1):42-59. Review.

PubMed ID: 
7747785

Pages

Subscribe to RSS - strabismus