hypertelorism

Neu-Laxova Syndrome 1

Clinical Characteristics
Ocular Features: 

The globes are prominent, an appearance that is exaggerated sometimes by absence of the eyelids or ectropion.  The lashes may be absent in other patients.  Cloudy corneas and cataracts have been described.

Systemic Features: 

This is a lethal dysplasia-malformation syndrome in which some infants are stillborn while others do not live beyond a few days.  The placenta is often small and the umbilical cord is short.  Decreased fetal movements and polyhydramnios are often noted.  Microcephaly can be striking at birth but there is overall intrauterine growth retardation.  The skin is ichthyotic and dysplastic containing excess fatty tissue beneath the epidermis.  Digits are often small and may be fused (syndactyly).  There is generalized edema with ‘puffiness’ of the hands and feet.  The lungs are frequently underdeveloped and cardiac defects such as septal openings, patent ductus arteriosus and transposition of great vessels are common.  Males often have cryptorchidism while females have a bifid uterus and renal dysgenesis has been reported.

The face is dysmorphic with prominent globes (in spite of microphthalmia), the ears are large and malformed, the forehead is sloping, the nose is flattened and the jaw is small.  Some infants have a cleft lip and palate while the mouth is round and gaping.  The neck is usually short.

Severe brain malformations such as lissencephaly, cerebellar hypoplasia, and dysgenesis/agenesis of the corpus callosum are frequently present.

Genetics

This is an autosomal recessive disorder secondary to mutations in the PHGDH gene (1p12).

This condition has some clinical overlap with Neu-Laxova syndrome 2 (616038) but the latter is less severe and is caused by a different mutation.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available.

References
Article Title: 

Neu-laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway

Acuna-Hidalgo R, Schanze D, Kariminejad A, Nordgren A, Kariminejad MH, Conner P, Grigelioniene G, Nilsson D, Nordenskjold M, Wedell A, Freyer C, Wredenberg A, Wieczorek D, Gillessen-Kaesbach G, Kayserili H, Elcioglu N, Ghaderi-Sohi S, Goodarzi P, Setayesh H, van de Vorst M, Steehouwer M, Pfundt R, Krabichler B, Curry C, MacKenzie MG, Boycott KM, Gilissen C, Janecke AR, Hoischen A, Zenker M. Neu-laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway. Am J Hum Genet. 2014 Sep 4;95(3):285-93.

PubMed ID: 
25152457

Roberts Syndrome

Clinical Characteristics
Ocular Features: 

The eyes often appear prominent as the result of shallow orbits.  Hypertelorism and microphthalmia can be present.  The sclerae can have a bluish hue.   Cataracts and central corneal clouding plus scleralization and vascularization of the peripheral corneas are sometimes seen.  Lid colobomas and down-slanting palpebral fissures may be present.

Systemic Features: 

Failure of both membranous and long bones to grow properly lead to a variety of abnormalities such as craniosynostosis, hypomelia, syndactyly, oligodactyly, malar hypoplasia, short neck, micrognathia, and cleft lip and palate.  The long bones of the limbs may be underdeveloped or even absent.  Contractures of elbow, knee, and ankle joints are common as are digital anomalies.  Low birth weight and slow postnatal growth rates are usually result in short stature.  The hair is often sparse and light-colored. 

Mental development is impaired and some children are diagnosed to have mental retardation.  Cardiac defects are common.  Facial hemangiomas are often present as are septal defects and sometimes a patent ductus arteriosus.  External genitalia in both sexes appear enlarged.  The kidneys may be polycystic or horseshoe-shaped.

Genetics

This is an autosomal recessive condition caused by mutations in the ESCO2 gene (8p21.1).  Mutations in the same gene are also responsible for what some have called the SC phocomelia syndrome (269000) which has a similar but less severe phenotype.  Some consider the two disorders to be variants of the same condition and they are considered to be the same entity in this database.  The gene product is required for structural maintenance of centromeric cohesion during the cell cycle.  Microscopic anomalies of the centromeric region (puffing of the heterochromatic regions) are sometimes seen during cell division.

The Baller-Gerold syndrome (218600) has some phenotypic overlap with Roberts syndrome but is caused by mutations in a different gene (RECQL4).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Severely affected infants may be stillborn or die in infancy.  Other individuals live to adulthood.  There is no treatment for this condition beyond specific correction of individual anomalies.

References
Article Title: 

Baraitser-Winter Syndrome 2

Clinical Characteristics
Ocular Features: 

Hypertelorism, high arched eyebrows, ptosis, and  colobomas occur in the majority of individuals.

Systemic Features: 

Short stature, postnatal microcephaly, lissencephaly, intellectual disability, seizures, and sensorineural hearing loss are common.

Genetics

This syndrome can be considered to be an autosomal dominant disorder secondary to heterozygous mutations in the ACTG1 gene (17q25.3).  However, all patients have been sporadic.

Mutations in ACTG1 are also responsible for autosomal dominant progressive nonsyndromic hearing loss.  

A similar but unique condition known as Baraitser-Winter syndrome 1 (243310) is caused by heterozygous mutations in the ACTB gene. 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

There is no known treatment but special education, hearing devices, and physical therapy may be helpful.

References
Article Title: 

Baraitser-Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases

Verloes A, Di Donato N, Masliah-Planchon J, Jongmans M, Abdul-Raman OA, Albrecht B, Allanson J, Brunner H, Bertola D, Chassaing N, David A, Devriendt K, Eftekhari P, Drouin-Garraud V, Faravelli F, Faivre L, Giuliano F, Guion Almeida L, Juncos J, Kempers M, Eker HK, Lacombe D, Lin A, Mancini G, Melis D, Lourenco CM, Siu VM, Morin G, Nezarati M, Nowaczyk MJ, Ramer JC, Osimani S, Philip N, Pierpont ME, Procaccio V, Roseli ZS, Rossi M, Rusu C, Sznajer Y, Templin L, Uliana V, Klaus M, Van Bon B, Van Ravenswaaij C, Wainer B, Fry AE, Rump A, Hoischen A, Drunat S, Riviere JB, Dobyns WB, Pilz DT. Baraitser-Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases. Eur J Hum Genet. 2014 Jul 23.

PubMed ID: 
25052316

De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome

Riviere JB, van Bon BW, Hoischen A, Kholmanskikh SS, O'Roak BJ, Gilissen C, Gijsen S, Sullivan CT, Christian SL, Abdul-Rahman OA, Atkin JF, Chassaing N, Drouin-Garraud V, Fry AE, Fryns JP, Gripp KW, Kempers M, Kleefstra T, Mancini GM, Nowaczyk MJ, van Ravenswaaij-Arts CM, Roscioli T, Marble M, Rosenfeld JA, Siu VM, de Vries BB, Shendure J, Verloes A, Veltman JA, Brunner HG, Ross ME, Pilz DT, Dobyns WB. De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome. Nat Genet. 2012 Feb 26;44(4):440-4.

PubMed ID: 
22366783

Baraitser-Winter Syndrome 1

Clinical Characteristics
Ocular Features: 

Ptosis (both unilateral and bilateral), hypertelorism, prominent epicanthal folds, and colobomata are common.  The iris stroma may be dysplastic and correctopia has been observed.  Visual acuity has not been measured.

Systemic Features: 

Postnatal growth retardation leads to short stature.  Microcephaly and morphological aberrations in the brain such as lissencephaly, agenesis of the corpus callosum and pachygyria are present.  Seizures and developmental delays are common.  Hearing loss is sensorineural in type.

The ears are low-set and the posterior hair line may be low as well.  The nasal bridge appears broad and the nose appears short. Male genitalia are often underdeveloped.  Bicuspid aortic valves, patent ductus arteriosus, and aortic stenosis have been reported.

Genetics

Heterozygous mutations in the ACTB gene (7p22.1) are responsible for this apparent autosomal dominant syndrome.  However, all patients have been sporadic.

This condition is clinically similar to Baraitser-Winter syndrome 2 (614583) which is a unique entity caused by a mutation in ACTG1

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No specific treatment is available.

References
Article Title: 

New ocular finding in Baraitser-Winter syndrome

Rall N, Leon A, Gomez R, Daroca J, Lacassie Y. New ocular finding in Baraitser-Winter syndrome. Eur J Med Genet. 2017 Oct 9. pii: S1769-7212(17)30156-8. doi: 10.1016/j.ejmg.2017.10.006. [Epub ahead of print].

PubMed ID: 
29024830

Baraitser-Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases

Verloes A, Di Donato N, Masliah-Planchon J, Jongmans M, Abdul-Raman OA, Albrecht B, Allanson J, Brunner H, Bertola D, Chassaing N, David A, Devriendt K, Eftekhari P, Drouin-Garraud V, Faravelli F, Faivre L, Giuliano F, Guion Almeida L, Juncos J, Kempers M, Eker HK, Lacombe D, Lin A, Mancini G, Melis D, Lourenco CM, Siu VM, Morin G, Nezarati M, Nowaczyk MJ, Ramer JC, Osimani S, Philip N, Pierpont ME, Procaccio V, Roseli ZS, Rossi M, Rusu C, Sznajer Y, Templin L, Uliana V, Klaus M, Van Bon B, Van Ravenswaaij C, Wainer B, Fry AE, Rump A, Hoischen A, Drunat S, Riviere JB, Dobyns WB, Pilz DT. Baraitser-Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases. Eur J Hum Genet. 2014 Jul 23.

PubMed ID: 
25052316

De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome

Riviere JB, van Bon BW, Hoischen A, Kholmanskikh SS, O'Roak BJ, Gilissen C, Gijsen S, Sullivan CT, Christian SL, Abdul-Rahman OA, Atkin JF, Chassaing N, Drouin-Garraud V, Fry AE, Fryns JP, Gripp KW, Kempers M, Kleefstra T, Mancini GM, Nowaczyk MJ, van Ravenswaaij-Arts CM, Roscioli T, Marble M, Rosenfeld JA, Siu VM, de Vries BB, Shendure J, Verloes A, Veltman JA, Brunner HG, Ross ME, Pilz DT, Dobyns WB. De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome. Nat Genet. 2012 Feb 26;44(4):440-4.

PubMed ID: 
22366783

Orofaciodigital Syndrome, Type VI

Clinical Characteristics
Ocular Features: 

Hypertelorism and epicanthal folds have been described.  Some patients have nystagmus and strabismus. Ocular apraxia and difficulties in smooth visual pursuit may be present.   

Systemic Features: 

Polydactyly of the hands is a common feature.  The central metacarpal is often Y-shaped leading to ‘central polydactyly’.  The large toes may be bifid.  Cognitive deficits are common and some patients have been considered mentally retarded.  The ears are low-set and rotated posteriorly.  Some patients have a conductive hearing loss.  Oral anomalies may include a lobed tongue, lingual and sublingual hemartomas, micrognathia, clefting, and multiple buccoalveolar frenula.  Congenital heart anomalies, micropenis, and cryptorchidism have been reported.  Tachypnea and tachycardia have been noted.  Some patients have some degree of skeletal dysplasia and many individuals are short in stature.

The presence of cerebellar abnormalities such as hypoplasia (including absence) of the vermis may help to distinguish type VI from other forms of OFDS.  Hypothalamic dysfunction may be responsible for poor temperature regulation (hyperthermia). The ‘molar tooth sign’ seen on brain MRIs in Joubert syndrome (213300) is also present in OFDS VI. 

Genetics

This is a rare condition with limited family information.  Parents in one family were consanguineous, and multiple affected sibs in other families suggest this may be an autosomal recessive condition.  Homozygous mutations in TMEM216 have been found. Other patients have mutations in C5orf42.

Many of the clinical features in OFDS VI are also found among individuals with Joubert (213300) and Meckel (249000) syndromes that also sometimes have mutations in the TMEM216 and C5orf42 genes.  Some consider all of these conditions to be members of a group of overlapping disorders called ciliopathies or ciliary dyskinesias.   

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No specific treatment is available for this syndrome but individual signs and symptoms may need treatment.

References
Article Title: 

C5orf42 is the major gene responsible for OFD syndrome type VI

Lopez E, Thauvin-Robinet C, Reversade B, Khartoufi NE, Devisme L, Holder M, Ansart-Franquet H, Avila M, Lacombe D, Kleinfinger P, Kaori I, Takanashi JI, Le Merrer M, Martinovic J, No?'l C, Shboul M, Ho L, G?oven Y, Razavi F, Burglen L, Gigot N, Darmency-Stamboul V, Thevenon J, Aral B, Kayserili H, Huet F, Lyonnet S, Le Caignec C, Franco B, Rivi?(r)re JB, Faivre L, Atti?(c)-Bitach T. C5orf42 is the major gene responsible for OFD syndrome type VI. Hum Genet. 2013 Nov 1. [Epub ahead of print].

PubMed ID: 
24178751

Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes

Valente EM, Logan CV, Mougou-Zerelli S, Lee JH, Silhavy JL, Brancati F, Iannicelli M, Travaglini L, Romani S, Illi B, Adams M, Szymanska K, Mazzotta A, Lee JE, Tolentino JC, Swistun D, Salpietro CD, Fede C, Gabriel S, Russ C, Cibulskis K, Sougnez C, Hildebrandt F, Otto EA, Held S, Diplas BH, Davis EE, Mikula M, Strom CM, Ben-Zeev B, Lev D, Sagie TL, Michelson M, Yaron Y, Krause A, Boltshauser E, Elkhartoufi N, Roume J, Shalev S, Munnich A, Saunier S, Inglehearn C, Saad A, Alkindy A, Thomas S, Vekemans M, Dallapiccola B, Katsanis N, Johnson CA, Atti?(c)-Bitach T, Gleeson JG. Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes. Nat Genet. 2010 Jul;42(7):619-25.

PubMed ID: 
20512146

LEOPARD Syndrome

Clinical Characteristics
Ocular Features: 

Ocular hypertelorism is a characteristic of all forms of the LEOPARD syndrome.  The lid fissures may be downward slanting.  Combined with the inverted triangle facies, the appearance is similar to that of the Noonan syndrome (163950).

Systemic Features: 

This is a multisystem disorder manifest in skin, heart, skeletal, genital, neurologic and auditory systems.  Generalized lentiginosis is characteristic but they may not be present until age 4 or 5 years following the appearance of cafe-au-lait spots.  Some patients have patchy scalp hair loss.  The facies bears some resemblance to the Noonan syndrome but usually without the short, webbed neck.  Sensorineural hearing loss is found in 20% of individuals.  Cardiac conduction defects, pulmonic stenosis, and hypertrophic cardiomyopathy are often (85%) present.  Cognitive defects are present in 30% of patients and some individuals have been described as mentally retarded.  Juvenile behavior may be evident in the presence of normal intelligence.  Hypospadias, cryptorchidism, and gonadal infantilism have been seen in some patients.  The ears are often malformed (87%).  Thoracic skeletal anomalies have been described in 75% of patients.  Although somatic growth is described as slow, short stature is present in less than half of patients.

Rare patients without lentigines are said to resemble the Noonan syndrome (163950) in appearance.

Genetics

Heterozygous mutations in the PTPN11 gene (12q24) are most frequently responsible for this autosomal dominant disorder.  The same gene is mutated in more than half of patients with the Noonan syndrome (NS1)(163950) with which it is allelic.  Other mutations that cause what is called LEOPARD syndrome are RAF1 and BRAF.

Other types of LEOPARD syndrome such as LEOPARD syndrome 2 (611554) are far more rare but also share mutations with Noonan syndrome (RAF1 mutations in Noonan syndrome 5) (611553) and LEOPARD syndrome 3 (613707) with mutations in BRAF similar to that seen in NS7 (613706).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Assistive hearing devices, especially cochlear implants, may be helpful.  Special education can be of value in more mildly affected individuals.Treatment of cryptorchidism is similar to that of other children.

References
Article Title: 

Craniofacial-Deafness-Hand Syndrome

Clinical Characteristics
Ocular Features: 

This rare syndrome has anomalies in periocular structures but not in the eye itself.  The lid fissures are downward slanting with telecanthus and hypertelorism.  The nasolacrimal duct was missing in several individuals.

Systemic Features: 

The midface is generally flat with underdeveloped maxillary bones and absent or small nasal bones but there may be frontal bossing.  The nose appears hypoplastic with a broad, flat root resulting in dystopia canthorum.  Micrognathia and a high arched palate are sometimes present.   The sinuses are often underdeveloped.  There may be ulnar deviation of the hands and fingers while flexion contractures and clinodactyly of the 5th finger are often present.  A sensorineural hearing loss is present in many individuals.  No poliosis has been reported.

Genetics

This is an autosomal dominant condition secondary to mutations in the PAX3 gene (22q36.1) in at least some patients.  Changes in the same gene are responsible for types 1 and 3 of the Waardenburg syndrome (193500, 148820).  In fact, the major mutation, a heterozygous C-to-G transversion, has been identified in the same codon in both CDHS and Waardenburg 3 (148820) patients.

More patients need to be genotyped to clarify the clinical features distinctive of Waardenburg types 1 and 3 (193500, 148820) and CDHS syndrome.  Should we consider these conditions allelic or simply the result of variable expressivity?  The appearance of the nasal root and associated structures is similar and both conditions are associated with sensorineural hearing loss.  Type 3 Waardenburg syndrome (148820) often has a cleft palate and musculoskeletal deformities of the upper limbs and fingers.  So far, no pigmentation changes have been reported in CDHS.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Surgical release of contractures could be considered.

References
Article Title: 

Mowat-Wilson Syndrome

Clinical Characteristics
Ocular Features: 

Most reports of Mowat-Wilson disorders provide only incomplete ocular findings and the full phenotype remains to be described.  Most of the reported findings are part of the facial phenotype, such as downward slanting palpebral fissures, and 'wedge-shaped' eyebrows with the medial portion visibly wider than the temporal region.  Hypertelorism, strabismus and telecanthus have also been noted.  However, optic nerve atrophyor aplasia, RPE atrophy, microphthalmia, ptosis, and cataracts are sometimes present while strabismus is more common.  Iris and other uveal colobomas may be present and at least one patient has been reported with retinal aplasia.  There may be considerable asymmetry in the features among the two eyes.

Systemic Features: 

This is a highly complex dysmorphic developmental disorder with unusual progression of facial features.  Birth weight and length are usually normal but later there is general somatic and mental growth delay with microcephaly (pre- and post natal), short stature, intellectual disability, and epilepsy (70%).  Hypotonia has been noted at birth.  A significant proportion (~50%) of patients have Hirschsprung disease with megacolon.  Congenital heart defects are common, many involving septal openings.  Hypospadias is often present with or without other genitourinary anomalies.  Teeth are often crowded and crooked.  The earlobes may be flattened and may have a central depression.

The facial features are present in early childhood but as they mature the upper half of the nasal profile becomes convex, while the nasal tip becomes longer and overhangs the philtrum.  The eyes appear more deeply set.  The chin lengthens and prognathism becomes apparent.  IQ levels cannot be determined but many individuals exhibit behavioral or emotional disturbances.

Genetics

Heterozygous mutations in ZEB2 (2q22.3) are responsible for most cases (81%) of this disorder.  A large number of molecular mutations, many of the nonsense type, have been reported. About 2-4% of patients have cytogenetic alterations involving the 2q22 region.

Another disorder with microcephaly, intellectual disability and Hirschsprung disease is Goldberg-Shprintzen syndrome (609460) with mutations in the KIAA1279 gene.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Treatment may be directed at specific defects but there is no treatment for the general disorder. Individuals can live to adulthood. Treatment is largely symptomatic.  Physical and speech treatment can be helpful if initiated early.

References
Article Title: 

Phenotype and genotype of 87 patients with Mowat-Wilson syndrome and

Ivanovski I, Djuric O, Caraffi SG, Santodirocco D, Pollazzon M, Rosato S,
Cordelli DM, Abdalla E, Accorsi P, Adam MP, Ajmone PF, Badura-Stronka M, Baldo C,
Baldi M, Bayat A, Bigoni S, Bonvicini F, Breckpot J, Callewaert B, Cocchi G,
Cuturilo G, De Brasi D, Devriendt K, Dinulos MB, Hjortshoj TD, Epifanio R,
Faravelli F, Fiumara A, Formisano D, Giordano L, Grasso M, Gronborg S, Iodice A,
Iughetti L, Kuburovic V, Kutkowska-Kazmierczak A, Lacombe D, Lo Rizzo C, Luchetti
A, Malbora B, Mammi I, Mari F, Montorsi G, Moutton S, Moller RS, Muschke P,
Nielsen JEK, Obersztyn E, Pantaleoni C, Pellicciari A, Pisanti MA, Prpic I,
Poch-Olive ML, Raviglione F, Renieri A, Ricci E, Rivieri F, Santen GW, Savasta S,
Scarano G, Schanze I, Selicorni A, Silengo M, Smigiel R, Spaccini L, Sorge G,
Szczaluba K, Tarani L, Tone LG, Toutain A, Trimouille A, Valera ET, Vergano SS,
Zanotta N, Zenker M, Conidi A, Zollino M, Rauch A, Zweier C, Garavelli L.
Phenotype and genotype of 87 patients with Mowat-Wilson syndrome and
recommendations for care
. Genet Med. 2018 Jan 4. doi: 10.1038/gim.2017.221. [Epub
ahead of print].

PubMed ID: 
29300384

Clinical spectrum of eye malformations in four patients with Mowat-Wilson syndrome

Bourchany A, Giurgea I, Thevenon J, Goldenberg A, Morin G, Bremond-Gignac D, Paillot C, Lafontaine PO, Thouvenin D, Massy J, Duncombe A, Thauvin-Robinet C, Masurel-Paulet A, Chehadeh SE, Huet F, Bron A, Creuzot-Garcher C, Lyonnet S, Faivre L. Clinical spectrum of eye malformations in four patients with Mowat-Wilson syndrome. Am J Med Genet A. 2015 Apr 21. [Epub ahead of print]

PubMed ID: 
25899569

The behavioral phenotype of Mowat-Wilson syndrome

Evans E, Einfeld S, Mowat D, Taffe J, Tonge B, Wilson M. The behavioral phenotype of Mowat-Wilson syndrome. Am J Med Genet A. 2012 Feb;158A(2):358-66. doi: 10.1002/ajmg.a.34405.

PubMed ID: 
22246645

Mowat-Wilson syndrome: facial phenotype changing with age: study of 19 Italian patients and review of the literature

Garavelli L, Zollino M, Mainardi PC, Gurrieri F, Rivieri F, Soli F, Verri R, Albertini E, Favaron E, Zignani M, Orteschi D, Bianchi P, Faravelli F, Forzano F, Seri M, Wischmeijer A, Turchetti D, Pompilii E, Gnoli M, Cocchi G, Mazzanti L, Bergamaschi R, De Brasi D, Sperandeo MP, Mari F, Uliana V, Mostardini R, Cecconi M, Grasso M, Sassi S, Sebastio G, Renieri A, Silengo M, Bernasconi S, Wakamatsu N, Neri G. Mowat-Wilson syndrome: facial phenotype changing with age: study of 19 Italian patients and review of the literature. Am J Med Genet A. 2009 Mar;149A(3):417-26. Review.

PubMed ID: 
19215041

Clinical and mutational spectrum of Mowat-Wilson syndrome

Zweier C, Thiel CT, Dufke A, Crow YJ, Meinecke P, Suri M, Ala-Mello S, Beemer F, Bernasconi S, Bianchi P, Bier A, Devriendt K, Dimitrov B, Firth H, Gallagher RC, Garavelli L, Gillessen-Kaesbach G, Hudgins L, K?SS?SSri?SSinen H, Karstens S, Krantz I, Mannhardt A, Medne L, M?ocke J, Kibaek M, Krogh LN, Peippo M, Rittinger O, Schulz S, Schelley SL, Temple IK, Dennis NR, Van der Knaap MS, Wheeler P, Yerushalmi B, Zenker M, Seidel H, Lachmeijer A, Prescott T, Kraus C, Lowry RB, Rauch A. Clinical and mutational spectrum of Mowat-Wilson syndrome. Eur J Med Genet. 2005 Apr-Jun;48(2):97-111

PubMed ID: 
16053902

Coloboma, Ptosis, Hypertelorism, and Global Delay

Clinical Characteristics
Ocular Features: 

The ocular phenotype includes ptosis, hypertelorism, iris coloboma and prominent epicanthal folds with epicanthus inversus.  The coloboma may be unilateral and involve other portions of the uveal tract. The orbits have been described as shallow.  At least one patient has been described as having microphthalmia and microcornea.

Systemic Features: 

The systemic features reported include severe global delay, a broad nasal bridge, and short stature.  Physical growth delay, mental retardation, short neck, low-set ears, and low posterior hairline have been noted.  Males may have a micropenis and undescended testicles.  The pinnae may be malformed and rotated posteriorly. Several patients had a hearing deficit.

CT scans have shown microcephaly with pachygyria and or even virtual agyria of the frontal, temporal, and parietal lobes.

Genetics

This condition is caused by heterozygous mutations in the ACTG1 gene (17q25.3) and therefore transmitted in an autosomal dominant pattern.  Sibs but no parental consanguinity has been reported.  Both sexes are affected.

Mutations in the same gene are responsible for a somewhat similar condition known as Baraister-Winter 2 syndrome (614583).

Temtamy syndrome (218340) has some similar features but is caused by mutations in C12orf57 (12p13).  In addition to microphthalmia and colobomas, intractable seizures, global delay and abnormalities of the corpus callosum are present.

Several patients that may have had this syndrome have had pericentric inversions of chromosome 2: inv(2)(p12q14).  The PAX8 gene maps to the distal breakpoint of this inversion and may play a role as the location of a recessive mutation or as part of a submicroscopic inversion.  No parent-child transmission has been reported.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

Exome sequencing identifies compound heterozygous mutations in C12orf57 in two siblings with severe intellectual disability, hypoplasia of the corpus callosum, chorioretinal coloboma, and intractable seizures

Platzer K, Huning I, Obieglo C, Schwarzmayr T, Gabriel R, Strom TM, Gillessen-Kaesbach G, Kaiser FJ. Exome sequencing identifies compound heterozygous mutations in C12orf57 in two siblings with severe intellectual disability, hypoplasia of the corpus callosum, chorioretinal coloboma, and intractable seizures. Am J Med Genet A. 2014 May 5. [Epub ahead of print].

PubMed ID: 
24798461

Donnai-Barrow Syndrome

Clinical Characteristics
Ocular Features: 

A number of ocular features have been described in this disorder, including telecanthus, hypertelorism, and iris hypoplasia with marked iris transillumination.  Myopia is commonly present and retinal detachments are a risk.  Several patients had iris colobomas.  Cataracts, small optic nerves, and macular hypoplasia have been reported as well.  The lid fissures usually slant downward. 

Systemic Features: 

The facial dysmorphology, in addition to the periocular malformations, includes a prominent brow or frontal bossing, posterior rotation of the ears, a flat nasal bridge and a short nose.  Sensorineural hearing loss is universal and at least some patients have complete or partial agenesis of the corpus callosum, and an enlarged anterior fontanel.  Diaphragmatic and umbilical hernias often occur together.  Low-molecular-weight proteinuria in the absence of aminoaciduria is a frequent feature.  Developmental delays are often seen but occasional patients have normal intellect.  Rare patients have seizures. 

Genetics

This is a rare autosomal recessive disorder caused by homozygous mutations in the LRP2 (low-density lipoprotein receptor-related protein 2 or megalin) gene located at 2q24-q31.  Some patients have an ocular phenotype resembling the Stickler syndrome (609508).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Treatment is focused on specific manifestations such as cataract and retinal detachment surgery. Patients need to be monitored throughout life for retinal disease.  Omphaloceles and diaphragmatic hernias need to be repaired.  Hearing aids may be beneficial. 

References
Article Title: 

Pages

Subscribe to RSS - hypertelorism