iris hypoplasia

Axenfeld-Rieger Syndrome, Type 3

Clinical Characteristics
Ocular Features: 

The most important ocular feature is glaucoma, found in greater than 50% of patients.  It is frequently difficult to control and blindness is far too common.  The ocular phenotype has many similar features found in type 1 (RIEG1) but is discussed separately in this database since it is caused by a different mutation (see Axenfeld-Rieger syndrome, type 1 for a full description of the phenotype).  It has the typical findings of anterior segment dysgenesis including anterior displacement of Schwalbe's line, iris stromal hypoplasia, correctopia, and, of course, glaucoma.

Systemic Features: 

Patients with this type of Axenfeld-Rieger disorder are less likely to have the systemic anomalies such as craniofacial and dental defects often seen in RIEG1.  However, they often have a sensorineural hearing impairment and many have cardiac valvular and septal defects not usually seen in RIEG1.

Genetics

This is an autosomal dominant disorder resulting from a mutation in the FOXC1, a transcription factor gene located at 6p25.  Mutations in the same gene also cause iris hypoplasia/iridogoniodysgenesis (IGDA) (IRID1) 601631) which is sometimes reported as a unique disorder but is either allelic or the same disorder as the type of Axenfeld-Rieger syndrome discussed here.

Type 1 Axenfeld-Rieger syndrome (180500) results from mutations in the PITX1 transcription factor gene and type 4 from mutations in PRDM5, also a transcription factor gene.  However, digenic cases have also been reported with mutations in both PITX1 and FOXC1 genes.

The mutation responsible for type 2 Axenfeld-Rieger syndrome (601499) has as yet not been identified.  Diagnosis is best made by ruling out mutations in PITX1 and FOXC1 although it is claimed that maxillary hypoplasia and umbilical defects are less common in type 2.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

All patients with Axenfeld-Rieger syndromes must be monitored and treated for glaucoma throughout their lives.

References
Article Title: 

Axenfeld-Rieger syndrome

Seifi M, Walter MA. Axenfeld-Rieger syndrome. Clin Genet. 2017 Oct 3. doi: 10.1111/cge.13148. [Epub ahead of print] Review.

PubMed ID: 
28972279

EDICT Syndrome

Clinical Characteristics
Ocular Features: 

This is a rare disorder with multiple anterior segment anomalies.  The corneal stroma is thinned in the range of 330 to 460 um with uniform steepening (no cone).  The epithelium may be irregular and edematous, the stroma is diffusely hazy, and the endothelium is irregular with many guttae.  Anterior polar cataracts are likely congenital and often require removal before the age of 20 years.  The pupils are often eccentric and difficult to dilate.  The iris stroma may appear atrophic.  Visual acuity, even in the aphakic condition, is in the range of 20/30 to 20/160.

Histological studies show attenuation of the endothelium with cellular overlapping and aggregates of fibrillar material that stains for cytokeratin.  Descemet membrane is thickened as is the epithelial basement membrane and both intracellular and extracellular lipid deposition is seen throughout the stroma and the Bowman membrane.

Systemic Features: 

No systemic abnormalities have been reported.

Genetics

This is an autosomal dominant disorder resulting from a heterozygous single base substitution (57C-T) in the MIR184 gene (15q25.1).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Cataract removal and penetrating keratoplasty can be helpful.  It is unknown whether the donor corneal tissue develops similar opacities.

References
Article Title: 

Aniridia 1

Clinical Characteristics
Ocular Features: 

Aniridia is the name of both a disorder and a group of disorders.  This because aniridia is both an isolated ocular disease and a feature of several malformation syndromes.  Absence of the iris was first reported in the early 19th century.  The hallmark of the disease is bilateral iris hypoplasia which may consist of minimal loss of iris tissue with simple radial clefts, colobomas, pseudopolycoria, and correctopia, to nearly complete absence.  Goniosocopy may be required to visualize tags of iris root when no iris is visible externally.  Glaucoma is frequently present (~67%) and often difficult to treat.  It is responsible for blindness in a significant number of patients.  About 15% of patients are diagnosed with glaucoma in each decade of life but this rises to 35% among individuals 40-49 years of age.  Hypoplasia and dysplasia of the fovea are likely responsible for the poor vision in many individuals.  Nystagmus is frequently present.  The ciliary body may also be hypoplastic. 

Visual acuity varies widely.  In many families it is less than 20/60 in all members and the majority have less than 20/200.  Photophobia can be incapacitating.  Posterior segment OCT changes suggest that outer retinal damage suggestive of a phototoxic retinopathy may also be a factor in the reduced acuity.  Cataracts (congenital in >75%), ectopia lentis (bilateral in >26%), optic nerve hypoplasia, variable degrees of corneal clouding with or without a vascularized pannus, and dysgenesis of the anterior chamber angle are frequently present. 

Increased corneal thickness (>600 microns) has been found in some series and should be considered when IOP measurements are made.  In early stages of the disease, focal opacities are present in the basal epithelium, associated with sub-basal nerves.  Dendritic cells can infiltrate the central epithelium and normal limbal palisade architecture is absent. 

Meibomian gland anomalies also contribute to the corneal disease.  The glands may be decreased in number and smaller in size contributing to deficiencies of the tear film and unstable surface wetting.

Systemic Features: 

In addition to 'pure' aniridia in which no systemic features are found, at least six disorders have been reported in which systemic anomalies do occur.  Three of these have associated renal anomalies, including Wilms tumor with other genitourinary anomalies and mental retardation, sometimes called WAGR (194072) syndrome, another (612469) with similar features plus obesity sometime called WAGRO (612469) syndrome reported in isolated patients, and yet another with partial aniridia (206750) and unilateral renal agenesis and psychomotor retardation reported in a single family.  Aniridia with dysplastic or absent patella (106220) has been reported in a single three generation family.  Cerebellar ataxia and mental retardation with motor deficits (Gillespie syndrome; 206700) have been found in other families with anirdia.  Another 3 generation family has been reported in which aniridia, microcornea and spontaneously resorbed cataracts occured (106230).

About one-third of patients with aniridia also have Wilms tumor and many have some cognitive deficits.

Genetics

The majority of cases have a mutation in the paired box gene (PAX6) complex, or at least include this locus when chromosomal aberrations such as deletions are present in the region (11p13).  This complex (containing at least 9 genes) is multifunctional and important to the tissue regulation of numerous developmental genes.   PAX6 mutations, encoding a highly conserved transcription regulator, generally cause hypoplasia of the iris and foveal hypoplasia but are also important in CNS development.  It has been suggested that PAX6 gene dysfunction may be the only gene defect associated with aniridia.  More than 300 specific mutations, most causing premature truncation of the polypeptide, have been identified.  

AN1 results from mutations in the PAX6 gene.  Two additional forms of aniridia have been reported in which functional alterations in genes that modulate the expression of PAX6 are responsible: AN2 (617141) with mutations in ELP4 and AN3 (617142) with mutations in TRIM44.  Both ELP4 and TRIM44 are regulators of the PAX6 transcription gene.

Associated abnormalities may be due to a second mutation in the WT1 gene in WAGR (194072) syndrome, a deletion syndrome involving both WT1 and PAX6 genes at 11p13.  The WAGRO syndrome (612469) is caused by a contiguous deletion in chromosome 11 (11p12-p13) involving three genes: WT1, PAX6, and BDNF.  All types are likely inherited as autosomal dominant disorders although nearly one-third of cases occur sporadically.

Mutations in PAX6 associated with aniridia can cause other anterior chamber malformations such as Peters anomaly (604229).

Gillespie syndrome (206700 ) is an allelic disorder with neurological abnormalities including cerebellar ataxia and mental retardation.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Treatment is directed at the associated threats to vision such as glaucoma, corneal opacities, and cataracts.  Glaucoma is the most serious threat and is the most difficult to treat. The best results have been reported with glaucoma drainage devices.  All patients should have eye examinations at appropriate intervals throughout life, focused on glaucoma screening.  It is well to keep in mind that foveal maldevelopment often precludes significant improvement in acuity and heroic measures must be carefully evaluated.  Specifically, corneal transplants and glaucoma control measures frequently fail.

Low vision aids are often helpful.  Tinted lenses can minimize photophobia.  Occupational and vocational training should be considered for older individuals.  Surface wetting of the cornea should be periodically evaluated and appropriate topical lubrication used as needed. 

Young children with aniridia should have periodic examinations with renal imaging as recommended by a urologist.

In mice, postnatal topical ocular application of ataluren-based eyedrop formulations can reverse malformations caused by PAX6 mutations.

References
Article Title: 

Familial aniridia with preserved

Elsas FJ, Maumenee IH, Kenyon KR, Yoder F. Familial aniridia with preserved ocular function. Am J Ophthalmol. 1977 May;83(5):718-24.

PubMed ID: 
868970

Axenfeld-Rieger Syndrome, Type 1

Clinical Characteristics
Ocular Features: 

Axenfeld-Rieger syndrome consists of a heterogeneous group of disorders with overlapping features.  Common to all types are the presence of ocular, dental, facial, skeletal abnormalities and autosomal dominant inheritance.  Anterior chamber dysgenesis of some form is universally present and severe glaucoma occurs in 50% of patients.  This may have its onset in childhood with typical symptoms of congenital glaucoma such as photophobia, excessive tearing and corneal clouding.  Hypoplasia of the iris is common and when progressive may result in an ectopic pupil and/or pseudopolycoria.  Iris insertion and Schwalbe's line are often anteriorly displaced with iridocorneal adhesions, a pattern that leads to the inclusion of this disorder among those with iridogoniodysgenesis or anterior chamber dysgenesis.  Pupillary ectropion of the posterior pigmented layer of the iris may be seen.

There is considerable clinical overlap among conditions with iris dysgenesis.  Some patients with typical systemic features of Axenfeld-Rieger syndrome may even have typical anterior chamber features of Axenfeld-Rieger anomaly in one eye and severe iris hypoplasia resembling aniridia in the other.

Systemic Features: 

Dental anomalies and mid-facial hypoplasia secondary to underdeveloped maxillary sinuses are among the most common systemic features in type 1.  The nasal root often appears abnormally broad and the lower lip appears to protrude. The teeth are frequently small and conical in shape with wide spaces between them (diastema).  Some teeth may be missing.  The umbilicus may fail to involute normally and retains excessive, redundant skin that sometimes leads to the erroneous diagnosis of an umbilical hernia for which unnecessary surgery may be performed.  Hypospadius is frequently present while cardiac defects, sensorineural deafness, and anal stenosis are less common.

Genetics

There is clinical and genetic heterogeneity in this syndrome and precise classification of many families remains elusive without knowing the genotype.  Mutations in at least four genes are responsible and all are are responsible for phenotypes transmitted in autosomal dominant patterns.  Type 1 discussed here is caused by a mutation in the homeobox transcription factor gene, PITX2, located at 4q25-q26.  A type of iris hypoplasia (IH)/iridogoniodysgenesis (IGDS) (IRID2; 137600) disorder has been classified separately but is caused by a mutation in PITX2 as well and many cases have the same systemic features.  Mutations in the same gene have also been found in ring dermoid of the cornea (180550) and in some cases of Peters anomaly (604229).

RIEG2 (601499) is rare but a deletion of 13q14 has been reported in several cases.  Mapping in a large family with 11 affected individuals yielded a locus in the same region.  Clinical signs overlap types 1 and 3 with dental, craniofacial, and ocular features, but with hearing impairment and rare umbilical anomalies.

Mutations in the FOXC1 gene (6p25) may be responsible for RIEG3 (602482).  However, a family has been reported with a severe 'Axenfeld-Rieger phenotype' in which a digenic etiology may have been responsible: patients had mutations in both FOXC1 and PITX2

Heterozygous mutations in the PRDM5 gene (4q25-q26) have been identified in 4 members of a Pakistani family with typical features of the Axenfeld-Rieger syndrome. It is labeled type 4 Axenfeld-Rieger syndrome in this database. 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

The presence of glaucoma requires prompt and vigorous treatment but control is difficult with blindness too often the result.  Oral surgery may be beneficial for dental problems.  Low vision aids can be useful.

References
Article Title: 

Axenfeld-Rieger syndrome

Seifi M, Walter MA. Axenfeld-Rieger syndrome. Clin Genet. 2017 Oct 3. doi: 10.1111/cge.13148. [Epub ahead of print] Review.

PubMed ID: 
28972279

The Rieger syndrome

Jorgenson RJ, Levin LS, Cross HE, Yoder F, Kelly TE. The Rieger syndrome. Am J Med Genet. 1978;2(3):307-18.

PubMed ID: 
263445

Neuhauser Syndrome

Clinical Characteristics
Ocular Features: 

This rare disorder is characterized by profound mental retardation and megalocornea together with nonspecific facial features including epicanthal folds, broad nasal root, frontal bossing and antimongoloid lid slanting.

Systemic Features: 

Hypotonia and marked psychomotor retardation are the most prominent systemic features.   Short stature, hypercholesterolemia, seizures and hypothyroidism have also been reported.

Genetics

No specific mutation has been found.  Most cases occur sporadically.  The mode of inheritance is presumed to be autosomal recessive on the basis of parental consanquinity found in occasional parents with multiple affected offspring.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available.
 

References
Article Title: 

Association of CHRDL1 Mutations and Variants with X-linked Megalocornea, Neuhäuser Syndrome and Central Corneal Thickness

Davidson AE, Cheong SS, Hysi PG, Venturini C, Plagnol V, Ruddle JB, Ali H, Carnt N, Gardner JC, Hassan H, Gade E, Kearns L, Jelsig AM, Restori M, Webb TR, Laws D, Cosgrove M, Hertz JM, Russell-Eggitt I, Pilz DT, Hammond CJ, Tuft SJ, Hardcastle AJ. Association of CHRDL1 Mutations and Variants with X-linked Megalocornea, Neuhauser Syndrome and Central Corneal Thickness. PLoS One. 2014 Aug 5.

PubMed ID: 
25093588

PNPLA6 mutations cause Boucher-Neuhauser and Gordon Holmes syndromes as part of a broad neurodegenerative spectrum

Synofzik M, Gonzalez MA, Lourenco CM, Coutelier M, Haack TB, Rebelo A, Hannequin D, Strom TM, Prokisch H, Kernstock C, Durr A, Schols L, Lima-Martinez MM, Farooq A, Schule R, Stevanin G, Marques W Jr, Zuchner S. PNPLA6 mutations cause Boucher-Neuhauser and Gordon Holmes syndromes as part of a broad neurodegenerative spectrum. Brain. 2013 Dec 19. [Epub ahead of print].

PubMed ID: 
24355708

Pages

Subscribe to RSS - iris hypoplasia