seizures

Mental Retardation, AD 34

Clinical Characteristics
Ocular Features: 

Patients may have upslanting lid fissures, epicanthus, ptosis, synophrys, and cortical visual impairment.

Systemic Features: 

Among the three reported individuals with the COL4A3BP mutation, one had postnatal microcephaly, widely spaced teeth, synophrys, and intellectual disability. Another had trunk hypotonia, global developmental delay, wide intermamillary distance, 2-3 toe syndactyly, tonic-clonic seizures, and myopathic facies. The third had a broad-based gait, coarse and curly hair, tonic-clonic seizures, and global developmental delay. 

Genetics

In a screening study of 1133 children with severe undiagnosed developmental conditions, three males were found with heterozygous mutations in the COL4A3BP gene (5q13).  Family history data are not given for these three individuals but autosomal dominant transmission seems to be a reasonable assumption.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Supportive care is required but no other treatment has been reported.

References
Article Title: 

Cataracts, Congenital, Deafness, Short Stature, Developmental Delay

Clinical Characteristics
Ocular Features: 

The facial features superficially resemble those often seen in Down syndrome patients with slanting (up or down) lid fissures and epicanthal folds. The amount of ptosis is variable.  Lens opacities are usually congenital in origin.  Hypopigmentation of the macula has been noted in two individuals.

Systemic Features: 

The characteristic facies may be evident at birth and requires karyotyping to rule out the trisomy of Down syndrome. Brachycephaly and a flat face may be present.  The mouth is often small and the nasal tip is shortened while the philtrum is long and smooth.  Some degree of intellectual disability and neurosensory hearing loss soon become evident.  There is postnatal growth delay and most individuals are short in stature.  The ears are low-set and rotated posteriorly.

The skeletal anomalies are not fully delineated but one patient had bilateral radioulnar synostosis while hip chondrolysis requiring hip replacement has been seen in two adult individuals.  Limited motion may be present in some joints, both large and small.  Seizures have been reported in a few individuals. Nails may appear dystrophic and there are variable tooth anomalies present. 

Genetics

The responsible heterozygous mutations are in the MAF gene (16q22-q23).  Type 4 (CCA4) (610202) autosomal dominant cerulean cataracts with multiple morphologies may also result from mutations in this transcription factor gene.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No general treatment for this condition is known.  Congenital cataracts can be removed.  Some patients may benefit from special education.   Seizure medications may be indicated and some patients can benefit from hearing aids.  Severe joint disease may require replacement.

References
Article Title: 

Mutations Impairing GSK3-Mediated MAF Phosphorylation Cause Cataract, Deafness, Intellectual Disability, Seizures, and a Down Syndrome-like Facies

Niceta M, Stellacci E, Gripp KW, Zampino G, Kousi M, Anselmi M, Traversa A, Ciolfi A, Stabley D, Bruselles A, Caputo V, Cecchetti S, Prudente S, Fiorenza MT, Boitani C, Philip N, Niyazov D, Leoni C, Nakane T, Keppler-Noreuil K, Braddock SR, Gillessen-Kaesbach G, Palleschi A, Campeau PM, Lee BH, Pouponnot C, Stella L, Bocchinfuso G, Katsanis N, Sol-Church K, Tartaglia M. Mutations Impairing GSK3-Mediated MAF Phosphorylation Cause Cataract, Deafness, Intellectual Disability, Seizures, and a Down Syndrome-like Facies. Am J Hum Genet. 2015 May 7;96(5):816-25.

PubMed ID: 
25865493

Kabuki Syndrome 2

Clinical Characteristics
Ocular Features: 

The facial features are characteristic primarily because of the appearance of the periocular features.  The eyebrows are highly arched and sparse.  The lid fissures are long with eversion of the lateral portion of the lower eyelid.  The eyelashes are bushy.  Nystagmus and strabismus have been reported.

Systemic Features: 

Only a small number of individuals with Kabuki syndrome 2 have been reported and the phenotype is incompletely described.  Most of the features in type 2 are similar to those in type 1 with defects in multiple organs.  There are often cardiac malformations including septal defects.  Otitis media and hearing loss are common.  The pinnae are large and cupped.  A highly arched or cleft palate may be present and the teeth are usually small.  The joints are highly mobile and general hypotonia is often present. The fifth finger is often short and clinodactylous.  Persistent fetal fingerpads are common.  The amount of intellectual disability varies considerably with some patients functioning normally.  Urogenital anomalies are less common than found in Kabuki syndrome 1 and anal malformations do not seem to be a feature.

Genetics

Kabuki syndrome 2 is an X-linked disorder, usually as the result of a mutation in the KDM6A gene (Xp11.3).   Patients with the X-linked form of Kabuki represent about 5-10% of cases.   

Kabuki syndrome 1 (147920) is an autosomal dominant condition caused by heterozygous mutations in the KMT2D gene but remaining heterogeneity is suggested by the fact that a substantial proportion (30%) of individuals with Kabuki syndrome features has neither of these mutations.

In a 3 generation family two males had the typical Kabuki phenotype whereas their mother and grandmother (all had the KMT2D mutation) had various attenuated features.

Treatment
Treatment Options: 

Management guidelines are available (Management of Kabuki Syndrome).

References
Article Title: 

Molecular analysis, pathogenic mechanisms, and readthrough therapy on a large cohort of Kabuki syndrome patients

Micale L, Augello B, Maffeo C, Selicorni A, Zucchetti F, Fusco C, De Nittis P, Pellico MT, Mandriani B, Fischetto R, Boccone L, Silengo M, Biamino E, Perria C, Sotgiu S, Serra G, Lapi E, Neri M, Ferlini A, Cavaliere ML, Chiurazzi P, Monica MD, Scarano G, Faravelli F, Ferrari P, Mazzanti L, Pilotta A, Patricelli MG, Bedeschi MF, Benedicenti F, Prontera P, Toschi B, Salviati L, Melis D, Di Battista E, Vancini A, Garavelli L, Zelante L, Merla G. Molecular analysis, pathogenic mechanisms, and readthrough therapy on a large cohort of Kabuki syndrome patients. Hum Mutat. 2014 Jul;35(7):841-50.

PubMed ID: 
24633898

Kabuki Syndrome 1

Clinical Characteristics
Ocular Features: 

The facial features and specifically the periocular anomalies are diagnostic and responsible for the eponymic designation (resembling the make-up of actors of a Japanese theatrical form known as Kabuki). The lid fissures are long and narrow and the lateral third of the lower lids are often everted.  The eyebrows are highly-arched and broad with some sparsity especially in the lateral portion.  The eyelashes are thick and ptosis is often noted. Strabismus may be present.  Blue sclerae have been reported.

Some patients may have extreme microphthalmia.

Systemic Features: 

Post-natal growth delay and short stature are present as a result of anomalies in the vertebrae often with secondary scoliosis.  Persistence of the fetal fingertip pads is common. Hypotonia and joint hypermobility have been noted and some degree of intellectual disability is common.  Seizures have been reported but these are not common. Cleft lip and palate are seen in about a third of patients and the palate is highly arched in about 75%.  The teeth are small, frequently malformed and widely spaced.  Feeding difficulties are common.  Anal anomalies such as imperforate anus, anovestibular fistulas, and an anteriorly placed opening may be present, especially in females.  A small penis, hypospadias, and cryptorchidism are common in males.

An ill-defined immune deficit seems to be a common feature as evident by susceptibility to infections, primarily otitis media in infants and later recurrent sinopulmonary infections.   The majority of patients have hypogammaglobulinemia with a variable pattern of antibody abnormalities resembling common variable immune deficiency and especially low levels of serum IgA.  

Hearing loss is seen in nearly half of patients, some of which is no doubt due to recurrent otitis media but CT radiography has demonstrated dysplastic morphology of inner ear structures and the petrous bone.  The ears are large and cupped and preauricular pits may be present as well.

Biliary atresia and a variety of morphological anomalies of the kidney have been reported.  Renal failure can occur.  Perhaps as many as 58% of patients have congenital heart defects, mostly septal in location. 

Genetics

Heterozygous mutations in KMT2D (12q13.12) (also called MLL2) are responsible for Kabuki syndrome 1 but parental transmission to offspring is rare and the majority of patients occur sporadically.  There is also an X-linked form (Kabuki 2) caused by mutations in KDM5A (Xp11.3).  Insufficient clinical data regarding the X-linked phenotype so far has precluded the ability to distinguish the two disorders without genotyping.

Residual genetic heterogeneity remains, however, as a substantial proportion of patients do not have mutations in the two mutant genes known.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

There is no general treatment for this condition.  Management guidelines are available (Management of Kabuki Syndrome).

References
Article Title: 

MLL2 and KDM6A mutations in patients with Kabuki syndrome

Miyake N, Koshimizu E, Okamoto N, Mizuno S, Ogata T, Nagai T, Kosho T, Ohashi H, Kato M, Sasaki G, Mabe H, Watanabe Y, Yoshino M, Matsuishi T, Takanashi J, Shotelersuk V, Tekin M, Ochi N, Kubota M, Ito N, Ihara K, Hara T, Tonoki H, Ohta T, Saito K, Matsuo M, Urano M, Enokizono T, Sato A, Tanaka H, Ogawa A, Fujita T, Hiraki Y, Kitanaka S, Matsubara Y, Makita T, Taguri M, Nakashima M, Tsurusaki Y, Saitsu H, Yoshiura K, Matsumoto N, Niikawa N. MLL2 and KDM6A mutations in patients with Kabuki syndrome. Am J Med Genet A. 2013 Sep;161A(9):2234-43. 

PubMed ID: 
23913813

Tenorio Syndrome

Clinical Characteristics
Ocular Features: 

The eyebrows appear bushy.  Inflammation of the limbus and keratoconjunctivitis sicca are often present and reported to resemble Sjogren syndrome.

Systemic Features: 

Infants appear large at birth with a large forehead and macrocephaly.  Birth weight, length, and head circumference are usually above the 97th percentile. The mandible appears large and the lips are full and ‘fleshy’.  Dentition is delayed.  Recurrent stomatitis and gastroesophageal reflux have been noted.  Closure of the fontanels is delayed.  Hypotonia and hyperflexible joints can be a feature.

Multiple brain anomalies have been described including cortical atrophy, dilated and asymmetrical ventricles, and mild hydrocephalus.  Psychomotor development and milestones are delayed.  Intellectual disabilities, syncope, hypoglycemia, seizures, apneic episodes, mood anomalies, abnormal gait, and general clumsiness may be present.  There was considerable clinical variation among the six reported patients. 

Genetics

Heterozygous mutations in RNF125 (18q12.1) are responsible for this syndrome. 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

A new overgrowth syndrome is due to mutations in RNF125

Tenorio J, Mansilla A, Valencia M, Martinez-Glez V, Romanelli V, Arias P, Castrejon N, Poletta F, Guillen-Navarro E, Gordo G, Mansilla E, Garcia-Santiago F, Gonzalez-Casado I, Vallespin E, Palomares M, Mori MA, Santos-Simarro F, Garcia-Minaur S, Fernandez L, Mena R, Benito-Sanz S, del Pozo A, Silla JC, Ibanez K, Lopez-Granados E, Martin-Trujillo A, Montaner D; SOGRI Consortium, Heath KE, Campos-Barros A, Dopazo J, Nevado J, Monk D, Ruiz-Perez VL, Lapunzina P. A new overgrowth syndrome is due to mutations in RNF125. Hum Mutat. 2014 Dec;35(12):1436-41.

PubMed ID: 
25196541

Filippi Syndrome

Clinical Characteristics
Ocular Features: 

The ocular features have not been fully described.  The most consistent features are long eyelashes, thick (bushy) eyebrows, and 'visual disturbance'.  Most individuals have a facial dysmorphism which includes a broad nasal base suggestive of hypertelorism.  Optic atrophy and proptosis have been noted. 

Systemic Features: 

Intrauterine growth retardation is sometimes seen.  Microcephaly, short stature, syndactyly, intellectual disability (often labeled mental retardation), and a dysmorphic face are characteristic.  Some individuals have cryptorchidism, seizures, and ectodermal abnormalities including nail hypoplasia, hirsutism, and microdontia.  Mental and physical delays are common.  The syndactyly usually involves only soft tissue between toes 2, 3, and 4 and fingers 3 and 4 accompanied by clinodactyly of the 5th finger.  Polydactyly is sometimes present while radiologically the radial head may show evidence of hypoplasia. 

Genetics

Homozygosity or compound heterozygosity in the CKAP2L gene (2q13) segregates with this phenotype. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

Mutations in CKAP2L, the human homolog of the mouse Radmis gene, cause Filippi syndrome

Hussain MS, Battaglia A, Szczepanski S, Kaygusuz E, Toliat MR, Sakakibara S, Altmuller J, Thiele H, Nurnberg G, Moosa S, Yigit G, Beleggia F, Tinschert S, Clayton-Smith J, Vasudevan P, Urquhart JE, Donnai D, Fryer A, Percin F, Brancati F, Dobbie A, Smigiel R, Gillessen-Kaesbach G, Wollnik B, Noegel AA, Newman WG, Nurnberg P. Mutations in CKAP2L, the human homolog of the mouse Radmis gene, cause Filippi syndrome. Am J Hum Genet. 2014 Nov 6;95(5):622-32.

PubMed ID: 
25439729

Epileptic Encephalopathy, Early Infantile 28

Clinical Characteristics
Ocular Features: 

Infants with this lethal neuropathy often have minimal or absent eye contact from birth.  Responses to visual stimuli are often but not always absent.  Optic atrophy may be present and the ERG is abnormal in some individuals. The retinas may have "abnormal" pigmentation while scotopic and photopic flash ERG responses are reduced as are visual evoked potentials indicating delayed visual maturation with severe macular and optic nerve dysfunction. 

Systemic Features: 

Seizures begin within weeks after birth and are resistant to pharmacological treatment.  There is no spontaneous motility and little or no psychomotor development.  Normal developmental milestones are usually not achieved.  Spasticity and hyperreflexia are often present but some newborn infants are hypotonic.  MRI imaging reveals cortical atrophy with hippocampal hypoplasia and a hypoplastic corpus callosum. Progressive microcephaly has been described.

Infants generally do not live beyond two years of age and may die within weeks or a few months. Pulmonary dysfunction can be a significant cause of morbidity. 

Genetics

The transmission pattern is consistent with autosomal recessive inheritance.  Homozygous and compound heterozygous mutations in the WWOX gene (16q23) have been found in several families.

Among the limited number of patients reported, at least two with compound heterozygous mutations had normal brain imaging, appropriate visual responses, and some ability to interact with their environment.  Profound psychomotor delays, however, remained.  Hypotonia replaced spasticity as a neurological feature in some infants.

The same gene is mutated in autosomal recessive spinocerebellar ataxia 12 (614322), a less severe condition in which gaze-evoked nystagmus occurs.

Other forms of epileptic encephalopathy have been reported (see 617105, 617106, and 617113) including Early Onset Epileptic Encephalopathy 48 (617276).  For an autosomal dominant form of epileptic encephalopathy in this database, see Epileptic Encephalopathy, Early Onset 47 (617166).

 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is known for this condition.

References
Article Title: 

WWOX-related encephalopathies: delineation of the phenotypical spectrum and emerging genotype-phenotype correlation

Mignot C, Lambert L, Pasquier L, Bienvenu T, Delahaye-Duriez A, Keren B, Lefranc J, Saunier A, Allou L, Roth V, Valduga M, Moustaine A, Auvin S, Barrey C, Chantot-Bastaraud S, Lebrun N, Moutard ML, Nougues MC, Vermersch AI, Heron B, Pipiras E, Heron D, Olivier-Faivre L, Gueant JL, Jonveaux P, Philippe C. WWOX-related encephalopathies: delineation of the phenotypical spectrum and emerging genotype-phenotype correlation. J Med Genet. 2015 Jan;52(1):61-70..

PubMed ID: 
25411445

Chorioretinopathy with Microcephaly 2

Clinical Characteristics
Ocular Features: 

Microphthalmia and microcornea are seen in most individuals and one patient had unilateral clinical anophthalmia. Hyperopia and cataracts may be present. Nystagmus is common.  One patient had a corneal opacity.  The chorioretinopathy has not been described beyond evidence of the maculopathy, attenuated retinal vessels, and occasionally hyperpigmented zones.  The ERG is either not recordable or consistent with a severe rod-cone dystrophy.  Vitreous inclusions and a 'vitreoretinal dystrophy' with falciform retinal folds were noted in several patients.  A traction detachment was present in one and bilateral serous detachments were noted in another.

Systemic Features: 

Patients have mild to severe microcephaly (up to -15 SD) with psychomotor delays.  Profound intellectual disability is a consistent feature.  Physical growth is retarded and patients have shortness of stature.  Most patients are unable to sit, stand, or walk unassisted.  One patient died at 5.5 years of age while another was alive at 20 years of age.  Rare patients may have hearing loss and seizures.

Scoliosis, kyphosis, and lordosis may be seen while  other skeletal malformations seem to occur sporadically e.g., triphalangeal thumbs, brachydactyly, postaxial polydactyly, and restricted large joint motion.  

The forehead slopes markedly.  Neuroimaging shows a consistent reduction in cortex size with simple gyral folding while the cerebellum and the brain stem are also small.  Subarachnoid cysts have been noted in several patients and the corpus callosum may be short or otherwise malformed.

Genetics

Homozygous mutations in the PLK4 gene (4q28.2) segregate with this condition.  Its product localizes to centrioles and plays a central role in centriole duplication.

For a somewhat similar condition but without the sloping forhead see Chorioretinoapathy with Microcephaly 1 (251270) but resulting from homozygous mutations in TUBGCP6.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is know.

References
Article Title: 

Mutations in PLK4, encoding a master regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy

Martin CA, Ahmad I, Klingseisen A, Hussain MS, Bicknell LS, Leitch A, Nurnberg G, Toliat MR, Murray JE, Hunt D, Khan F, Ali Z, Tinschert S, Ding J, Keith C, Harley ME, Heyn P, Muller R, Hoffmann I, Daire VC, Dollfus H, Dupuis L, Bashamboo A, McElreavey K, Kariminejad A, Mendoza-Londono R, Moore AT, Saggar A, Schlechter C, Weleber R, Thiele H, Altmuller J, Hohne W, Hurles ME, Noegel AA, Baig SM, Nurnberg P, Jackson AP. Mutations in PLK4, encoding a master regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy. Nat Genet. 2014 Dec;46(12):1283-92.

PubMed ID: 
25344692

Galloway-Mowat Syndrome

Clinical Characteristics
Ocular Features: 

Microphthalmia, hypertelorism, epicanthal folds and ptosis are prominent ocular features.  Other manifestations include corneal opacities, cataracts, and optic atrophy.  Nystagmus of a roving nature is seen in all individuals and is usually present at birth.  There is evidence of visual impairment in more than 90% of individuals.  Features of an anterior chamber dysgenesis such as a hypoplastic iris are sometimes present.

The ocular features of this syndrome have not been fully described.

Systemic Features: 

Infants are born with low birth weight due to intrauterine growth retardation and there is often a history of oligohydramnios.  Newborns are often floppy and hypotonic although spasticity may develop later.  A small midface and microcephaly (80%) with a sloping forehead and a flat occiput are frequently evident.  The ears are large, floppy, and low-set while the hard palate is highly arched and the degree of micrognathia can be severe.  The fists are often clenched and the digits can appear narrow and arachnodactylous.  Hiatal hernias may be present.

Many patients develop features of the nephrotic syndrome in the first year of life with proteinuria and hypoalbuminemia due to glomerular kidney disease and renal system malformations.  Renal biopsies show focal segmental glomerulosclerosis in the majority of glomeruli.

Evidence of abnormal neuronal migration with brain deformities such as cystic changes, porencephaly, encephalomalacia, and spinal canal anomalies have been reported.  MRI imaging shows diffuse cortical and cerebellar atrophy atrophic optic nerves, and thinning of the corpus callosum.  The normal striated layers of the lateral geniculate nuclei are obliterated.  The cerebellum shows severe cellular disorganization with profound depletion of granule cells and excessive Bergmann gliosis.  The vermis is shortened. 

Multifocal seizures are sometimes (40%) seen in infancy and early childhood and the EEG generally shows slowed and disorganized backgound and sometimes a high-voltage hypsarrhythmia.  The degree of psychomotor delay and intellectual disability is often severe.   Most patients are unable to sit independently (90%), ambulate (90%), or make purposeful hand movements (77%).  The majority (87%) of children have extrapyramidal movements and a combination of axial dystonia and limb chorea.  Mean age of death is about 11 years (2.7 to 28 years in one series) and most die from renal failure.

Genetics

Gallaway-Mowat syndrome is likely a spectrum of disease.  Homozygous mutations in the WDR73 gene (15q25) are responsible for one form of this syndrome.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

There is no treatment for GAMOS.

References
Article Title: 

Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73

Jinks RN, Puffenberger EG, Baple E, Harding B, Crino P, Fogo AB, Wenger O, Xin B, Koehler AE, McGlincy MH, Provencher MM, Smith JD, Tran L, Al Turki S, Chioza BA, Cross H, Harlalka GV, Hurles ME, Maroofian R, Heaps AD, Morton MC, Stempak L, Hildebrandt F, Sadowski CE, Zaritsky J, Campellone K, Morton DH, Wang H, Crosby A, Strauss KA. Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73. Brain. 2015 Aug;138(Pt 8):2173-90.  PubMed PMID: 26070982.

PubMed ID: 
26070982

Loss-of-Function Mutations in WDR73 Are Responsible for Microcephaly and Steroid-Resistant Nephrotic Syndrome: Galloway-Mowat Syndrome

Colin E, Huynh Cong E, Mollet G, Guichet A, Gribouval O, Arrondel C, Boyer O, Daniel L, Gubler MC, Ekinci Z, Tsimaratos M, Chabrol B, Boddaert N, Verloes A, Chevrollier A, Gueguen N, Desquiret-Dumas V, Ferre M, Procaccio V, Richard L, Funalot B, Moncla A, Bonneau D, Antignac C. Loss-of-Function Mutations in WDR73 Are Responsible for Microcephaly and Steroid-Resistant Nephrotic Syndrome: Galloway-Mowat Syndrome. Am J Hum Genet. 2014 Dec 4;95(6):637-48..

PubMed ID: 
25466283

Pigmentary Retinopathy with Congenital Sideroblastic Anemia

Clinical Characteristics
Ocular Features: 

The ocular phenotype has not been fully described, but several patients with a pigmentary retinopathy resembling retinitis pigmentosa have been reported.

Systemic Features: 

Patients present at a median age of two months with typically severe microcytic sideroblastic anemia. Median hemoglobin levels are 7.1 g/dl.  Lymphopenia and panhypogammaglobulinemia are usually present and many children have periodic febrile illnesses.  The number of CD19+ B cells is reduced.  Aminoaciduria, hypercalcinuria, and nephrocalcinosis have been observed.  Cardiomyopathy has been seen in several patients and may be responsible for the early demise.  Developmental delays may be severe with variable neurodegeneration features such as seizures, cerebellar symptoms, and sensorineural hearing loss.  Achievement of milestones is generally delayed.  Median survival is 4 years although one patient has lived to the age of 19 years.

Genetics

Homozygous mutations in TRNT1 (3p25.1) are responsible for this disorder.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Allogeneic bone marrow transplantation in one patient reversed the hematologic and immunologic anomalies although retinitis subsequently developed.

References
Article Title: 

Mutations in TRNT1 cause congenital sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD)

Chakraborty PK, Schmitz-Abe K, Kennedy EK, Mamady H, Naas T, Durie D, Campagna DR, Lau A, Sendamarai AK, Wiseman DH, May A, Jolles S, Connor P, Powell C, Heeney MM, Giardina PJ, Klaassen RJ, Kannengiesser C, Thuret I, Thompson AA, Marques L, Hughes S, Bonney DK, Bottomley SS, Wynn RF, Laxer RM, Minniti CP, Moppett J, Bordon V, Geraghty M, Joyce PB, Markianos K, Rudner AD, Holcik M, Fleming MD. Mutations in TRNT1 cause congenital sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD). Blood. 2014 Oct 30;124(18):2867-71.

PubMed ID: 
25193871

A novel syndrome of congenital sideroblastic anemia, B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD)

Wiseman DH, May A, Jolles S, Connor P, Powell C, Heeney MM, Giardina PJ, Klaassen RJ, Chakraborty P, Geraghty MT, Major-Cook N, Kannengiesser C, Thuret I, Thompson AA, Marques L, Hughes S, Bonney DK, Bottomley SS, Fleming MD, Wynn RF. A novel syndrome of congenital sideroblastic anemia, B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD). Blood. 2013 Jul 4;122(1):112-23.

PubMed ID: 
23553769

Pages

Subscribe to RSS - seizures