epicanthal folds

Developmental Delay with Short Stature, Dysmorphic Features, and Sparse Hair

Clinical Characteristics
Ocular Features: 

Patients may have downward-slanting lid fissures, hypertelorism, epicanthal folds, and sparse eyebrows and eyelashes.

Systemic Features: 

Patients have scaphocephaly with or without craniosynostosis and facial dysmorphism with a depressed nasal bridge and micrognathia.  Short stature, sparse hair, and developmental delay are characteristic.  Hypoplastic toenails and dental anomalies are present.  Brain imaging may show Dandy-Walker malformations and cerebellar vermis hypoplasia.  The kidneys may have focal interstitial nephritis and there may be intermittent hematuria and proteinuria in the presence of otherwise normal renal function.  Cardiac septal defects have been noted.

Genetics

Homozygous mutations in the DPH1 gene (17p13.3) are responsible for this disorder.  Two families have been reported with this condition. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

Matching two cohorts validates DPH1 as a gene responsible for autosomal recessive intellectual disability with short stature, craniofacial, and ectodermal anomalies

Loucks CM, Parboosingh JS, Shaheen R, Bernier FP, McLeod DR, Seidahmed MZ, Puffenberger EG, Ober C, Hegele RA, Boycott KM, Alkuraya FS, Innes AM. Matching two independent cohorts validates DPH1 as a gene responsible for autosomal recessive intellectual disability with short stature, craniofacial, and ectodermal anomalies. Hum Mutat. 2015 Oct;36(10):1015-9.

PubMed ID: 
26220823

Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families

Alazami AM, Patel N, Shamseldin HE, Anazi S, Al-Dosari MS, Alzahrani F, Hijazi H, Alshammari M, Aldahmesh MA, Salih MA, Faqeih E, Alhashem A, Bashiri FA, Al-Owain M, Kentab AY, Sogaty S, Al Tala S, Temsah MH, Tulbah M, Aljelaify RF, Alshahwan SA, Seidahmed MZ, Alhadid AA, Aldhalaan H, AlQallaf F, Kurdi W, Alfadhel M, Babay Z, Alsogheer M, Kaya N, Al-Hassnan ZN, Abdel-Salam GM, Al-Sannaa N, Al Mutairi F, El Khashab HY, Bohlega S, Jia X, Nguyen HC, Hammami R, Adly N, Mohamed JY, Abdulwahab F, Ibrahim N, Naim EA, Al-Younes B, Meyer BF, Hashem M, Shaheen R, Xiong Y, Abouelhoda M, Aldeeri AA, Monies DM, Alkuraya FS. Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Rep. 2015 Jan 13;10(2):148-61.

PubMed ID: 
25558065

Basel-Vanagaite-Smirin-Yosef Syndrome

Clinical Characteristics
Ocular Features: 

The eyes appear abnormally far apart.  Ptosis, microcornea, congenital cataracts, sparse eyebrows, and strabismus are usually present.  Epicanthal folds are often seen.

Systemic Features: 

Psychomotor development is severely delayed and with delay or absence of milestones.  DTRs are often hyperactive but some infants are described as hypotonic.  Some individuals have seizures.  There may be a nevus flammeus simplex lesion on the forehead and body hair is sparse.  Cleft palate, cardiac septal defects, hypospadius, thin corpus callosum and cerebral ventricular dilation have been observed.  The upper lip may have a tented morphology with everted lower lip vermilion. A short philtrum is common. 

Genetics

A homozygous missense mutation in the MED25 gene (19q13.33) has been reported and the transmission pattern is consistent with autosomal recessive inheritance.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No known treatment has been reported.

References
Article Title: 

Homozygous MED25 mutation implicated in eye-intellectual disability syndrome

Basel-Vanagaite L, Smirin-Yosef P, Essakow JL, Tzur S, Lagovsky I, Maya I, Pasmanik-Chor M, Yeheskel A, Konen O, Orenstein N, Weisz Hubshman M, Drasinover V, Magal N, Peretz Amit G, Zalzstein Y, Zeharia A, Shohat M, Straussberg R, Monte D, Salmon-Divon M, Behar DM. Homozygous MED25 mutation implicated in eye-intellectual disability syndrome. Hum Genet. 2015 Jun;134(6):577-87.

PubMed ID: 
25792360

PEHO Syndrome

Clinical Characteristics
Ocular Features: 

Optic atrophy is a common feature.  There may be lack of visual fixation from birth or sometimes several months later, attributed to cortical inattention.  Flash visual evoked potentials may be unrecordable. Pupillary responses to light are 'weak' and sluggish. Epicanthal folds may be seen.

Systemic Features: 

Infants are usually born with a normal head circumference but fall behind (2 SD or more) in the first year.  They have neonatal and infantile central hypotonia with brisk peripheral tendon reflexes during early childhood.  They are sometimes described as drowsy or lethargic.  Facial and limb edema can be extensive but transient sometimes and can disappear later in childhood.  The fingers are tapered.  The cheeks are full, the mouth is usually open and the upper lip appears 'tented'.  Global developmental delay is common and normal milestones are seldom attained.  Some patients have been described as severely retarded mentally.  Infantile spasms and myoclonic jerkingcan be seen within the first months of life while frank seizures with hypsarrhythmia are common in the first year of life.  Status epilepticus is a common occurrence.  General drowsiness and poor feeding are often features.  Death usually occurs in infancy or early childhood.  Midface hypoplasia and micrognathia are often present.

Brain imaging (MRI) and histology show severe alterations in myelination and cellular organization.  Neuronal loss is seen in the inner granular layer of the cerebellum but there is relative preservation of Purkinje cells.  General and progressive atrophy of the cerebellum and brain stem have been described.

Genetics

Homozygous frameshift mutations in ZNHIT3 (17q12) have been identified in affected members of several consanguineous families.  The presumed mutation seems to be most prevalent in Finland.

A somewhat similar disorder known as PEHO-like syndrome (617507) is the result of homozygous mutations in the CCDC88A gene.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Physical therapy to prevent contractures and general supportive care can be helpful.  Supplemental feeding may be required. 

References
Article Title: 

The PEHO syndrome

Riikonen R. The PEHO syndrome. Brain Dev. 2001 Nov;23(7):765-9. Review.

PubMed ID: 
11701291

Cataracts, Congenital, Deafness, Short Stature, Developmental Delay

Clinical Characteristics
Ocular Features: 

The facial features superficially resemble those often seen in Down syndrome patients with slanting (up or down) lid fissures and epicanthal folds. The amount of ptosis is variable.  Lens opacities are usually congenital in origin.  Hypopigmentation of the macula has been noted in two individuals.

Systemic Features: 

The characteristic facies may be evident at birth and requires karyotyping to rule out the trisomy of Down syndrome. Brachycephaly and a flat face may be present.  The mouth is often small and the nasal tip is shortened while the philtrum is long and smooth.  Some degree of intellectual disability and neurosensory hearing loss soon become evident.  There is postnatal growth delay and most individuals are short in stature.  The ears are low-set and rotated posteriorly.

The skeletal anomalies are not fully delineated but one patient had bilateral radioulnar synostosis while hip chondrolysis requiring hip replacement has been seen in two adult individuals.  Limited motion may be present in some joints, both large and small.  Seizures have been reported in a few individuals. Nails may appear dystrophic and there are variable tooth anomalies present. 

Genetics

The responsible heterozygous mutations are in the MAF gene (16q22-q23).  Type 4 (CCA4) (610202) autosomal dominant cerulean cataracts with multiple morphologies may also result from mutations in this transcription factor gene.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No general treatment for this condition is known.  Congenital cataracts can be removed.  Some patients may benefit from special education.   Seizure medications may be indicated and some patients can benefit from hearing aids.  Severe joint disease may require replacement.

References
Article Title: 

Mutations Impairing GSK3-Mediated MAF Phosphorylation Cause Cataract, Deafness, Intellectual Disability, Seizures, and a Down Syndrome-like Facies

Niceta M, Stellacci E, Gripp KW, Zampino G, Kousi M, Anselmi M, Traversa A, Ciolfi A, Stabley D, Bruselles A, Caputo V, Cecchetti S, Prudente S, Fiorenza MT, Boitani C, Philip N, Niyazov D, Leoni C, Nakane T, Keppler-Noreuil K, Braddock SR, Gillessen-Kaesbach G, Palleschi A, Campeau PM, Lee BH, Pouponnot C, Stella L, Bocchinfuso G, Katsanis N, Sol-Church K, Tartaglia M. Mutations Impairing GSK3-Mediated MAF Phosphorylation Cause Cataract, Deafness, Intellectual Disability, Seizures, and a Down Syndrome-like Facies. Am J Hum Genet. 2015 May 7;96(5):816-25.

PubMed ID: 
25865493

Galloway-Mowat Syndrome

Clinical Characteristics
Ocular Features: 

Microphthalmia, hypertelorism, epicanthal folds and ptosis are prominent ocular features.  Other manifestations include corneal opacities, cataracts, and optic atrophy.  Nystagmus of a roving nature is seen in all individuals and is usually present at birth.  There is evidence of visual impairment in more than 90% of individuals.  Features of an anterior chamber dysgenesis such as a hypoplastic iris are sometimes present.

The ocular features of this syndrome have not been fully described.

Systemic Features: 

Infants are born with low birth weight due to intrauterine growth retardation and there is often a history of oligohydramnios.  Newborns are often floppy and hypotonic although spasticity may develop later.  A small midface and microcephaly (80%) with a sloping forehead and a flat occiput are frequently evident.  The ears are large, floppy, and low-set while the hard palate is highly arched and the degree of micrognathia can be severe.  The fists are often clenched and the digits can appear narrow and arachnodactylous.  Hiatal hernias may be present.

Many patients develop features of the nephrotic syndrome in the first year of life with proteinuria and hypoalbuminemia due to glomerular kidney disease and renal system malformations.  Renal biopsies show focal segmental glomerulosclerosis in the majority of glomeruli.

Evidence of abnormal neuronal migration with brain deformities such as cystic changes, porencephaly, encephalomalacia, and spinal canal anomalies have been reported.  MRI imaging shows diffuse cortical and cerebellar atrophy atrophic optic nerves, and thinning of the corpus callosum.  The normal striated layers of the lateral geniculate nuclei are obliterated.  The cerebellum shows severe cellular disorganization with profound depletion of granule cells and excessive Bergmann gliosis.  The vermis is shortened. 

Multifocal seizures are sometimes (40%) seen in infancy and early childhood and the EEG generally shows slowed and disorganized backgound and sometimes a high-voltage hypsarrhythmia.  The degree of psychomotor delay and intellectual disability is often severe.   Most patients are unable to sit independently (90%), ambulate (90%), or make purposeful hand movements (77%).  The majority (87%) of children have extrapyramidal movements and a combination of axial dystonia and limb chorea.  Mean age of death is about 11 years (2.7 to 28 years in one series) and most die from renal failure.

Genetics

Gallaway-Mowat syndrome is likely a spectrum of disease.  Homozygous mutations in the WDR73 gene (15q25) are responsible for one form of this syndrome.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

There is no treatment for GAMOS.

References
Article Title: 

Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73

Jinks RN, Puffenberger EG, Baple E, Harding B, Crino P, Fogo AB, Wenger O, Xin B, Koehler AE, McGlincy MH, Provencher MM, Smith JD, Tran L, Al Turki S, Chioza BA, Cross H, Harlalka GV, Hurles ME, Maroofian R, Heaps AD, Morton MC, Stempak L, Hildebrandt F, Sadowski CE, Zaritsky J, Campellone K, Morton DH, Wang H, Crosby A, Strauss KA. Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73. Brain. 2015 Aug;138(Pt 8):2173-90.  PubMed PMID: 26070982.

PubMed ID: 
26070982

Loss-of-Function Mutations in WDR73 Are Responsible for Microcephaly and Steroid-Resistant Nephrotic Syndrome: Galloway-Mowat Syndrome

Colin E, Huynh Cong E, Mollet G, Guichet A, Gribouval O, Arrondel C, Boyer O, Daniel L, Gubler MC, Ekinci Z, Tsimaratos M, Chabrol B, Boddaert N, Verloes A, Chevrollier A, Gueguen N, Desquiret-Dumas V, Ferre M, Procaccio V, Richard L, Funalot B, Moncla A, Bonneau D, Antignac C. Loss-of-Function Mutations in WDR73 Are Responsible for Microcephaly and Steroid-Resistant Nephrotic Syndrome: Galloway-Mowat Syndrome. Am J Hum Genet. 2014 Dec 4;95(6):637-48..

PubMed ID: 
25466283

Cranial Dysinnervation Disorders with Strabismus and Arthrogryposis

Clinical Characteristics
Ocular Features: 

Strabismus and/or ophthalmoplegia are important features of a group of conditions known as cranial dysinnervation disorders.  Ptosis, Duane syndrome, V pattern exotropia and various degrees of ophthalmoplegia may be seen.  There may be considerable asymmetry in the manifestations in the two eyes.  Epicanthal folds, blepharophimosis, and hypermetropia are sometimes present.  Some patients have corneal leukomas, keratoglobus, high corneal astigmatism, and dysplastic optic disks. 

A pigmentary retinopathy and folds in the macula with an abnormal ERG has been reported.  Subnormal vision has been reported in some patients.

Systemic Features: 

Patients are often short in stature with pectus excavatum, spine stiffness, highly arched palate, and club feet.  Limited forearm rotation and wrist extension may be present.  The fingers appear long and often have contractures while the palmar and phalangeal creases may be absent.  Camptodactyly and clinodactyly are common.  Deep tendon reflexes are often hyporeactive and decreased muscle mass has been noted.  The muscles seem "firm" to palpation.  Restrictive lung disease has been reported.  Hearing loss is experienced by some individuals.

Genetics

Distal arthrogryposis type 5D is caused by homozygous or compound heterozygous mutations in the ECEL1 gene located at 2q36.  However, a similar phenotype (albeit with more severe ocular manifestations) results from heterozygous mutations in PIEZO2 (18p11).  Heterozygous mutations in the PIEZO2 gene have also been reported to cause distal arthrogryposis type 3 (Gordon syndrome [114300]) and Marden-Walker syndrome (248700) and all of these may be simply phenotypical variations of the same disorder.

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

There is no treatment for this condition.  Patients with subnormal vision may benefit from low vision aids and selective surgery may be helpful in reducing the physical restrictions from physical deformities.

References
Article Title: 

Mutations in PIEZO2 cause Gordon syndrome, Marden-Walker syndrome, and distal arthrogryposis type 5

McMillin MJ, Beck AE, Chong JX, Shively KM, Buckingham KJ, Gildersleeve HI, Aracena MI, Aylsworth AS, Bitoun P, Carey JC, Clericuzio CL, Crow YJ, Curry CJ, Devriendt K, Everman DB, Fryer A, Gibson K, Giovannucci Uzielli ML, Graham JM Jr, Hall JG, Hecht JT, Heidenreich RA, Hurst JA, Irani S, Krapels IP, Leroy JG, Mowat D, Plant GT, Robertson SP, Schorry EK, Scott RH, Seaver LH, Sherr E, Splitt M, Stewart H, Stumpel C, Temel SG, Weaver DD, Whiteford M, Williams MS, Tabor HK, Smith JD, Shendure J, Nickerson DA; University of Washington Center for Mendelian Genomics, Bamshad MJ. Mutations in PIEZO2 cause Gordon syndrome, Marden-Walker syndrome, and distal arthrogryposis type 5. Am J Hum Genet. 2014 May 1;94(5):734-44.

PubMed ID: 
24726473

Optic Atrophy with Intellectual Disability

Clinical Characteristics
Ocular Features: 

Optic atrophy is the primary ocular abnormality but visual deficits are said to originate from cortical impairment.  The optic discs are pale and may be small with excavation.  Strabismus and latent nystagmus are often present. Up slanting palpebral fissures and epicanthal folds have been noted. Visual acuity levels have not been reported.

Systemic Features: 

Facial dysmorphism of a non-specific pattern can be present as evidenced by protruding ears with helical anomalies, and a small, sometimes elevated nasal bridge. The fingers are small and tapered.  Developmental delay is common.  Obsessive-compulsive behavior and autistic features have been reported in a single individual.  Hypotonia may be present.

Genetics

This is an autosomal dominant disorder resulting from heterozygous mutations in the NR2F1 gene (5q15), a transcription regulator.   Six persons with this condition have so far been reported.  The gene product is a nuclear protein active in transcription regulation during neurodevelopment.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Only symptomatic treatment is available.  Low vision aids and special education may be of benefit.

References
Article Title: 

NR2F1 mutations cause optic atrophy with intellectual disability

Bosch DG, Boonstra FN, Gonzaga-Jauregui C, Xu M, de Ligt J, Jhangiani S, Wiszniewski W, Muzny DM, Yntema HG, Pfundt R, Vissers LE, Spruijt L, Blokland EA, Chen CA; Baylor-Hopkins Center for Mendelian Genomics, Lewis RA, Tsai SY, Gibbs RA, Tsai MJ, Lupski JR, Zoghbi HY, Cremers FP, de Vries BB, Schaaf CP. NR2F1 mutations cause optic atrophy with intellectual disability. Am J Hum Genet. 2014 Feb 6;94(2):303-9.

PubMed ID: 
24462372

Orofaciodigital Syndrome, Type VI

Clinical Characteristics
Ocular Features: 

Hypertelorism and epicanthal folds have been described.  Some patients have nystagmus and strabismus. Ocular apraxia and difficulties in smooth visual pursuit may be present.   

Systemic Features: 

Polydactyly of the hands is a common feature.  The central metacarpal is often Y-shaped leading to ‘central polydactyly’.  The large toes may be bifid.  Cognitive deficits are common and some patients have been considered mentally retarded.  The ears are low-set and rotated posteriorly.  Some patients have a conductive hearing loss.  Oral anomalies may include a lobed tongue, lingual and sublingual hemartomas, micrognathia, clefting, and multiple buccoalveolar frenula.  Congenital heart anomalies, micropenis, and cryptorchidism have been reported.  Tachypnea and tachycardia have been noted.  Some patients have some degree of skeletal dysplasia and many individuals are short in stature.

The presence of cerebellar abnormalities such as hypoplasia (including absence) of the vermis may help to distinguish type VI from other forms of OFDS.  Hypothalamic dysfunction may be responsible for poor temperature regulation (hyperthermia). The ‘molar tooth sign’ seen on brain MRIs in Joubert syndrome (213300) is also present in OFDS VI. 

Genetics

This is a rare condition with limited family information.  Parents in one family were consanguineous, and multiple affected sibs in other families suggest this may be an autosomal recessive condition.  Homozygous mutations in TMEM216 have been found. Other patients have mutations in C5orf42.

Many of the clinical features in OFDS VI are also found among individuals with Joubert (213300) and Meckel (249000) syndromes that also sometimes have mutations in the TMEM216 and C5orf42 genes.  Some consider all of these conditions to be members of a group of overlapping disorders called ciliopathies or ciliary dyskinesias.   

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No specific treatment is available for this syndrome but individual signs and symptoms may need treatment.

References
Article Title: 

C5orf42 is the major gene responsible for OFD syndrome type VI

Lopez E, Thauvin-Robinet C, Reversade B, Khartoufi NE, Devisme L, Holder M, Ansart-Franquet H, Avila M, Lacombe D, Kleinfinger P, Kaori I, Takanashi JI, Le Merrer M, Martinovic J, No?'l C, Shboul M, Ho L, G?oven Y, Razavi F, Burglen L, Gigot N, Darmency-Stamboul V, Thevenon J, Aral B, Kayserili H, Huet F, Lyonnet S, Le Caignec C, Franco B, Rivi?(r)re JB, Faivre L, Atti?(c)-Bitach T. C5orf42 is the major gene responsible for OFD syndrome type VI. Hum Genet. 2013 Nov 1. [Epub ahead of print].

PubMed ID: 
24178751

Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes

Valente EM, Logan CV, Mougou-Zerelli S, Lee JH, Silhavy JL, Brancati F, Iannicelli M, Travaglini L, Romani S, Illi B, Adams M, Szymanska K, Mazzotta A, Lee JE, Tolentino JC, Swistun D, Salpietro CD, Fede C, Gabriel S, Russ C, Cibulskis K, Sougnez C, Hildebrandt F, Otto EA, Held S, Diplas BH, Davis EE, Mikula M, Strom CM, Ben-Zeev B, Lev D, Sagie TL, Michelson M, Yaron Y, Krause A, Boltshauser E, Elkhartoufi N, Roume J, Shalev S, Munnich A, Saunier S, Inglehearn C, Saad A, Alkindy A, Thomas S, Vekemans M, Dallapiccola B, Katsanis N, Johnson CA, Atti?(c)-Bitach T, Gleeson JG. Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes. Nat Genet. 2010 Jul;42(7):619-25.

PubMed ID: 
20512146

Coloboma, Ptosis, Hypertelorism, and Global Delay

Clinical Characteristics
Ocular Features: 

The ocular phenotype includes ptosis, hypertelorism, iris coloboma and prominent epicanthal folds with epicanthus inversus.  The coloboma may be unilateral and involve other portions of the uveal tract. The orbits have been described as shallow.  At least one patient has been described as having microphthalmia and microcornea.

Systemic Features: 

The systemic features reported include severe global delay, a broad nasal bridge, and short stature.  Physical growth delay, mental retardation, short neck, low-set ears, and low posterior hairline have been noted.  Males may have a micropenis and undescended testicles.  The pinnae may be malformed and rotated posteriorly. Several patients had a hearing deficit.

CT scans have shown microcephaly with pachygyria and or even virtual agyria of the frontal, temporal, and parietal lobes.

Genetics

This condition is caused by heterozygous mutations in the ACTG1 gene (17q25.3) and therefore transmitted in an autosomal dominant pattern.  Sibs but no parental consanguinity has been reported.  Both sexes are affected.

Mutations in the same gene are responsible for a somewhat similar condition known as Baraister-Winter 2 syndrome (614583).

Temtamy syndrome (218340) has some similar features but is caused by mutations in C12orf57 (12p13).  In addition to microphthalmia and colobomas, intractable seizures, global delay and abnormalities of the corpus callosum are present.

Several patients that may have had this syndrome have had pericentric inversions of chromosome 2: inv(2)(p12q14).  The PAX8 gene maps to the distal breakpoint of this inversion and may play a role as the location of a recessive mutation or as part of a submicroscopic inversion.  No parent-child transmission has been reported.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

Exome sequencing identifies compound heterozygous mutations in C12orf57 in two siblings with severe intellectual disability, hypoplasia of the corpus callosum, chorioretinal coloboma, and intractable seizures

Platzer K, Huning I, Obieglo C, Schwarzmayr T, Gabriel R, Strom TM, Gillessen-Kaesbach G, Kaiser FJ. Exome sequencing identifies compound heterozygous mutations in C12orf57 in two siblings with severe intellectual disability, hypoplasia of the corpus callosum, chorioretinal coloboma, and intractable seizures. Am J Med Genet A. 2014 May 5. [Epub ahead of print].

PubMed ID: 
24798461

Oculodentodigital Dysplasia

Clinical Characteristics
Ocular Features: 

The eyes have been reported as small and sometimes appear deep-set.  The epicanthal folds are prominent and the lid fissures are small.  Microcornea and evidence of anterior chamber dysplasia including posterior synechiae, anterior displacement of Schwalbe’s line, and stromal hypoplasia in the peripupillary area may be present.  Many eyes have some persistence of the pupillary membrane. Nystagmus and strabismus has been seen in some individuals.  A few patients have evidence of a persistent hyperplastic primary vitreous, even bilaterally. Cataracts may be present as well and a few patients have been reported with open angle glaucoma.  Most patients have normal or near normal visual acuity.

Systemic Features: 

The clinical features of this syndrome are highly variable.  Hair is sparse and the nails are usually dysplastic.  The nose appears small and peaked with underdevelopment of the nasal alae, and the mandible may be broad.  The cranial bones are often hyperostotic and the long bones as well as the ribs and clavicle are widened.  The middle phalanges of the digits are usually hypoplastic or may be absent.  Syndactyly of fingers and toes is often a feature and camptodactyly is common.  The teeth are small and carious with evidence of enamel dysplasia.   Hair often grows slowly and is sparse.  A variety of neurological deficits have been reported but no consistent pattern has been recognized.  However, white matter lesions and basal ganglia changes have been documented on MRI.

Genetics

Both autosomal recessive and autosomal dominant inheritance have been proposed but in both cases the mutations are in the same gene, GJA1, located at 6q21-q23.2.

This disorder is allelic to Hallermann-Streiff syndrome (234100).

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

No treatment for the general condition is available.  Cataracts and glaucoma require attention when present, of course.

References
Article Title: 

Pages

Subscribe to RSS - epicanthal folds