micrognathia

PEHO Syndrome

Clinical Characteristics
Ocular Features: 

Optic atrophy is a common feature.  There may be lack of visual fixation from birth or sometimes several months later, attributed to cortical inattention.  Flash visual evoked potentials may be unrecordable. Pupillary responses to light are 'weak' and sluggish. Epicanthal folds may be seen.

Systemic Features: 

Infants are usually born with a normal head circumference but fall behind (2 SD or more) in the first year.  They have neonatal and infantile central hypotonia with brisk peripheral tendon reflexes during early childhood.  They are sometimes described as drowsy or lethargic.  Facial and limb edema can be extensive but transient sometimes and can disappear later in childhood.  The fingers are tapered.  The cheeks are full, the mouth is usually open and the upper lip appears 'tented'.  Global developmental delay is common and normal milestones are seldom attained.  Some patients have been described as severely retarded mentally.  Infantile spasms and myoclonic jerkingcan be seen within the first months of life while frank seizures with hypsarrhythmia are common in the first year of life.  Status epilepticus is a common occurrence.  General drowsiness and poor feeding are often features.  Death usually occurs in infancy or early childhood.  Midface hypoplasia and micrognathia are often present.

Brain imaging (MRI) and histology show severe alterations in myelination and cellular organization.  Neuronal loss is seen in the inner granular layer of the cerebellum but there is relative preservation of Purkinje cells.  General and progressive atrophy of the cerebellum and brain stem have been described.

Genetics

Homozygous frameshift mutations in ZNHIT3 (17q12) have been identified in affected members of several consanguineous families.  The presumed mutation seems to be most prevalent in Finland.

A somewhat similar disorder known as PEHO-like syndrome (617507) is the result of homozygous mutations in the CCDC88A gene.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Physical therapy to prevent contractures and general supportive care can be helpful.  Supplemental feeding may be required. 

References
Article Title: 

The PEHO syndrome

Riikonen R. The PEHO syndrome. Brain Dev. 2001 Nov;23(7):765-9. Review.

PubMed ID: 
11701291

Cole-Carpenter Syndrome 1

Clinical Characteristics
Ocular Features: 

The bony orbits are shallow and the eyes appear prominent as part of the facial and skull bone deformities.  The proptosis may be progressive and eventually interfere with blinking and normal surface wetting of the cornea. 

Systemic Features: 

This condition may superficially resemble osteogenesis imperfecta with osseous deformities and frequent fractures.  However, the occurrence of craniosynostosis and hydrocephalus helps to distinguish it.  Cranial sutures may be slow to fuse and macrocephaly has been described.  Communicating hydrocephalus can be a feature and may require shunting.  Some patients have osteopenia of the long bones that fracture easily.

The facial features are said to be distinctive with midface hypoplasia, low-set ears, micrognathia, and, of course, prominent globes.  Growth may be subnormal and a variety of limb bone and digital anomalies have been described.  Intelligence is normal, however.

Genetics

This condition is the result of heterozygous mutations in the P4HB gene (17q25.3) (PDI family).

See Cole-Carpenter Syndrome 2 (616294) for a somewhat similar disorder that is recessively inherited.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

A frontal craniectomy may be necessary during early childhood to relieve the proptosis particularly when blinking is impaired.  Patients must be followed for the development of communicating hydrocephalus.  Long bone fractures require prompt treatment. 

References
Article Title: 

Kaufman Oculocerebrofacial Syndrome

Clinical Characteristics
Ocular Features: 

Alterations in the morphology of periocular structures is the most consistent ocular feature.  These include epicanthal folds, upward-slanting lid fissures, ptosis, blepharophimosis, sparse eyebrows, and telecanthus.  However, pale optic discs, iris colobomas, microcornea, strabismus, nystagmus, and hypertelorism are variably present. 

Systemic Features: 

There is both intrauterine and postnatal growth retardation.  Hypotonia is often noted along with general psychomotor delays.  Neonatal respiratory distress and laryngeal stridor may be present.  The intellectual disability can be severe.  Corpus callosum aplasia and hypoplasia have been reported.  Microcephaly and brachycephaly with delayed suture closure are features.  The face is long and narrow and the mouth is disproportionally large.  A high arched palate can be present and the pinnae are often deformed, posteriorly rotated and may be accompanied by preauricular skin tags. The teeth appear widely spaced (diastema) and the lower jaw is underdeveloped.

Genetics

Kaufman BPIDS syndrome results from homozygous or compound heterozygous mutations in the UBE3B gene (12q23).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No general treatment is available although repair of some specific malformations is possible.

References
Article Title: 

Deficiency for the ubiquitin ligase UBE3B in a blepharophimosis-ptosis-intellectual-disability syndrome

Basel-Vanagaite L, Dallapiccola B, Ramirez-Solis R, Segref A, Thiele H, Edwards A, Arends MJ, Miro X, White JK, Desir J, Abramowicz M, Dentici ML, Lepri F, Hofmann K, Har-Zahav A, Ryder E, Karp NA, Estabel J, Gerdin AK, Podrini C, Ingham NJ, Altmuller J, Nurnberg G, Frommolt P, Abdelhak S, Pasmanik-Chor M, Konen O, Kelley RI, Shohat M, Nurnberg P, Flint J, Steel KP, Hoppe T, Kubisch C, Adams DJ, Borck G. Deficiency for the ubiquitin ligase UBE3B in a blepharophimosis-ptosis-intellectual-disability syndrome. Am J Hum Genet. 2012 Dec 7;91(6):998-1010.

PubMed ID: 
23200864

An oculocerebrofacial syndrome

Kaufman RL, Rimoin DL, Prensky AL, Sly WS. An oculocerebrofacial syndrome. Birth Defects Orig Artic Ser. 1971 Feb;7(1):135-8.

PubMed ID: 
5006210

Oculootofacial Dysplasia

Clinical Characteristics
Ocular Features: 

Many patients have lower lid colobomas, sometimes with malformations of the zygoma.  The palpebral fissures may appear narrow while some patients have a suggestion of hypertelorism.

Systemic Features: 

Neural development is normal but patients have significant facial dysmorphism. A variety of organ and bony malformations have been described.  Cardiac septal defects and sometimes renal malformations may be present.  The ears are large and are sometimes associated with preauricular tags.  Cleft lip and/or palate with bifid uvula, micrognathia, high nasal bridge, large nose, a short philtrum, choanal atresia, and mixed hearing loss are often present.  Choanal atresia is common.

Genetics

Biallelic loss-of-function mutations in the TXNL4A gene have been found in this presumed autosomal recessive condition. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Individual malformations can often be surgically corrected.

References
Article Title: 

Compound heterozygosity of low-frequency promoter deletions and rare loss-of-function mutations in TXNL4A causes Burn-McKeown syndrome

Wieczorek D, Newman WG, Wieland T, Berulava T, Kaffe M, Falkenstein D, Beetz C, Graf E, Schwarzmayr T, Douzgou S, Clayton-Smith J, Daly SB, Williams SG, Bhaskar SS, Urquhart JE, Anderson B, O'Sullivan J, Boute O, Gundlach J, Czeschik JC, van Essen AJ, Hazan F, Park S, Hing A, Kuechler A, Lohmann DR, Ludwig KU, Mangold E, Steenpass L, Zeschnigk M, Lemke JR, Lourenco CM, Hehr U, Prott EC, Waldenberger M, Bohmer AC, Horsthemke B, O'Keefe RT, Meitinger T, Burn J, Ludecke HJ, Strom TM. Compound heterozygosity of low-frequency promoter deletions and rare loss-of-function mutations in TXNL4A causes Burn-McKeown syndrome. Am J Hum Genet. 2014 Dec 4;95(6):698-707.

PubMed ID: 
25434003

Galloway-Mowat Syndrome

Clinical Characteristics
Ocular Features: 

Microphthalmia, hypertelorism, epicanthal folds and ptosis are prominent ocular features.  Other manifestations include corneal opacities, cataracts, and optic atrophy.  Nystagmus of a roving nature is seen in all individuals and is usually present at birth.  There is evidence of visual impairment in more than 90% of individuals.  Features of an anterior chamber dysgenesis such as a hypoplastic iris are sometimes present.

The ocular features of this syndrome have not been fully described.

Systemic Features: 

Infants are born with low birth weight due to intrauterine growth retardation and there is often a history of oligohydramnios.  Newborns are often floppy and hypotonic although spasticity may develop later.  A small midface and microcephaly (80%) with a sloping forehead and a flat occiput are frequently evident.  The ears are large, floppy, and low-set while the hard palate is highly arched and the degree of micrognathia can be severe.  The fists are often clenched and the digits can appear narrow and arachnodactylous.  Hiatal hernias may be present.

Many patients develop features of the nephrotic syndrome in the first year of life with proteinuria and hypoalbuminemia due to glomerular kidney disease and renal system malformations.  Renal biopsies show focal segmental glomerulosclerosis in the majority of glomeruli.

Evidence of abnormal neuronal migration with brain deformities such as cystic changes, porencephaly, encephalomalacia, and spinal canal anomalies have been reported.  MRI imaging shows diffuse cortical and cerebellar atrophy atrophic optic nerves, and thinning of the corpus callosum.  The normal striated layers of the lateral geniculate nuclei are obliterated.  The cerebellum shows severe cellular disorganization with profound depletion of granule cells and excessive Bergmann gliosis.  The vermis is shortened. 

Multifocal seizures are sometimes (40%) seen in infancy and early childhood and the EEG generally shows slowed and disorganized backgound and sometimes a high-voltage hypsarrhythmia.  The degree of psychomotor delay and intellectual disability is often severe.   Most patients are unable to sit independently (90%), ambulate (90%), or make purposeful hand movements (77%).  The majority (87%) of children have extrapyramidal movements and a combination of axial dystonia and limb chorea.  Mean age of death is about 11 years (2.7 to 28 years in one series) and most die from renal failure.

Genetics

Gallaway-Mowat syndrome is likely a spectrum of disease.  Homozygous mutations in the WDR73 gene (15q25) are responsible for one form of this syndrome.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

There is no treatment for GAMOS.

References
Article Title: 

Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73

Jinks RN, Puffenberger EG, Baple E, Harding B, Crino P, Fogo AB, Wenger O, Xin B, Koehler AE, McGlincy MH, Provencher MM, Smith JD, Tran L, Al Turki S, Chioza BA, Cross H, Harlalka GV, Hurles ME, Maroofian R, Heaps AD, Morton MC, Stempak L, Hildebrandt F, Sadowski CE, Zaritsky J, Campellone K, Morton DH, Wang H, Crosby A, Strauss KA. Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73. Brain. 2015 Aug;138(Pt 8):2173-90.  PubMed PMID: 26070982.

PubMed ID: 
26070982

Loss-of-Function Mutations in WDR73 Are Responsible for Microcephaly and Steroid-Resistant Nephrotic Syndrome: Galloway-Mowat Syndrome

Colin E, Huynh Cong E, Mollet G, Guichet A, Gribouval O, Arrondel C, Boyer O, Daniel L, Gubler MC, Ekinci Z, Tsimaratos M, Chabrol B, Boddaert N, Verloes A, Chevrollier A, Gueguen N, Desquiret-Dumas V, Ferre M, Procaccio V, Richard L, Funalot B, Moncla A, Bonneau D, Antignac C. Loss-of-Function Mutations in WDR73 Are Responsible for Microcephaly and Steroid-Resistant Nephrotic Syndrome: Galloway-Mowat Syndrome. Am J Hum Genet. 2014 Dec 4;95(6):637-48..

PubMed ID: 
25466283

Neu-Laxova Syndrome 2

Clinical Characteristics
Ocular Features: 

The eyes appear prominent, an effect that is sometimes exaggerated by absent or malformed eyelids.

Systemic Features: 

Intrauterine growth retardation is common and infants are born with significant deformities including microcephaly, limb malformations, flexion deformities, ichthyosis, and edema of the hands and feet.   Brain malformations may be present as well.

Genetics

This disorder has a transmission pattern consistent with autosomal recessive inheritance.  Homozygous or compound heterozygous mutations in the PSAT1 gene (9q21.2) are responsible. 

This condition has similar features to Neu-Laxova syndrome 1 (256520) but is less severe and results from a different mutation.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available.

References
Article Title: 

Neu-laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway

Acuna-Hidalgo R, Schanze D, Kariminejad A, Nordgren A, Kariminejad MH, Conner P, Grigelioniene G, Nilsson D, Nordenskjold M, Wedell A, Freyer C, Wredenberg A, Wieczorek D, Gillessen-Kaesbach G, Kayserili H, Elcioglu N, Ghaderi-Sohi S, Goodarzi P, Setayesh H, van de Vorst M, Steehouwer M, Pfundt R, Krabichler B, Curry C, MacKenzie MG, Boycott KM, Gilissen C, Janecke AR, Hoischen A, Zenker M. Neu-laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway. Am J Hum Genet. 2014 Sep 4;95(3):285-93.

PubMed ID: 
25152457

Neu-Laxova Syndrome 1

Clinical Characteristics
Ocular Features: 

The globes are prominent, an appearance that is exaggerated sometimes by absence of the eyelids or ectropion.  The lashes may be absent in other patients.  Cloudy corneas and cataracts have been described.

Systemic Features: 

This is a lethal dysplasia-malformation syndrome in which some infants are stillborn while others do not live beyond a few days.  The placenta is often small and the umbilical cord is short.  Decreased fetal movements and polyhydramnios are often noted.  Microcephaly can be striking at birth but there is overall intrauterine growth retardation.  The skin is ichthyotic and dysplastic containing excess fatty tissue beneath the epidermis.  Digits are often small and may be fused (syndactyly).  There is generalized edema with ‘puffiness’ of the hands and feet.  The lungs are frequently underdeveloped and cardiac defects such as septal openings, patent ductus arteriosus and transposition of great vessels are common.  Males often have cryptorchidism while females have a bifid uterus and renal dysgenesis has been reported.

The face is dysmorphic with prominent globes (in spite of microphthalmia), the ears are large and malformed, the forehead is sloping, the nose is flattened and the jaw is small.  Some infants have a cleft lip and palate while the mouth is round and gaping.  The neck is usually short.

Severe brain malformations such as lissencephaly, cerebellar hypoplasia, and dysgenesis/agenesis of the corpus callosum are frequently present.

Genetics

This is an autosomal recessive disorder secondary to mutations in the PHGDH gene (1p12).

This condition has some clinical overlap with Neu-Laxova syndrome 2 (616038) but the latter is less severe and is caused by a different mutation.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available.

References
Article Title: 

Neu-laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway

Acuna-Hidalgo R, Schanze D, Kariminejad A, Nordgren A, Kariminejad MH, Conner P, Grigelioniene G, Nilsson D, Nordenskjold M, Wedell A, Freyer C, Wredenberg A, Wieczorek D, Gillessen-Kaesbach G, Kayserili H, Elcioglu N, Ghaderi-Sohi S, Goodarzi P, Setayesh H, van de Vorst M, Steehouwer M, Pfundt R, Krabichler B, Curry C, MacKenzie MG, Boycott KM, Gilissen C, Janecke AR, Hoischen A, Zenker M. Neu-laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway. Am J Hum Genet. 2014 Sep 4;95(3):285-93.

PubMed ID: 
25152457

Roberts Syndrome

Clinical Characteristics
Ocular Features: 

The eyes often appear prominent as the result of shallow orbits.  Hypertelorism and microphthalmia can be present.  The sclerae can have a bluish hue.   Cataracts and central corneal clouding plus scleralization and vascularization of the peripheral corneas are sometimes seen.  Lid colobomas and down-slanting palpebral fissures may be present.

Systemic Features: 

Failure of both membranous and long bones to grow properly lead to a variety of abnormalities such as craniosynostosis, hypomelia, syndactyly, oligodactyly, malar hypoplasia, short neck, micrognathia, and cleft lip and palate.  The long bones of the limbs may be underdeveloped or even absent.  Contractures of elbow, knee, and ankle joints are common as are digital anomalies.  Low birth weight and slow postnatal growth rates are usually result in short stature.  The hair is often sparse and light-colored. 

Mental development is impaired and some children are diagnosed to have mental retardation.  Cardiac defects are common.  Facial hemangiomas are often present as are septal defects and sometimes a patent ductus arteriosus.  External genitalia in both sexes appear enlarged.  The kidneys may be polycystic or horseshoe-shaped.

Genetics

This is an autosomal recessive condition caused by mutations in the ESCO2 gene (8p21.1).  Mutations in the same gene are also responsible for what some have called the SC phocomelia syndrome (269000) which has a similar but less severe phenotype.  Some consider the two disorders to be variants of the same condition and they are considered to be the same entity in this database.  The gene product is required for structural maintenance of centromeric cohesion during the cell cycle.  Microscopic anomalies of the centromeric region (puffing of the heterochromatic regions) are sometimes seen during cell division.

The Baller-Gerold syndrome (218600) has some phenotypic overlap with Roberts syndrome but is caused by mutations in a different gene (RECQL4).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Severely affected infants may be stillborn or die in infancy.  Other individuals live to adulthood.  There is no treatment for this condition beyond specific correction of individual anomalies.

References
Article Title: 

Microphthalmia, Syndromic 6

Clinical Characteristics
Ocular Features: 

Ultrasound evaluation reveals globe size to vary widely from extremely small (6 mm) to normal axial length. Clinical anophthalmia is often diagnosed.  Both anophthalmia and microphthalmia may exist in the same individual. True anophthalmia has been confirmed in some patients in which no ocular tissue was detectable with ultrasound examination.  In such cases the optic nerves and chiasm are often missing as well.  Iris colobomas are common and these may extend posteriorly.  Myopia is sometimes present.

The ERG reveals generalized rod and cone dysfunction in some eyes, but may be normal in others. In many eyes the ERG is nonrecordable. Cataracts are frequently present.

Systemic Features: 

Digital and hand anomalies are common.  The hands are often described as broad and the thumbs may be low-placed.  The nails can appear dysplastic and postaxial polydactyly is often present.  Mild webbing of the fingers has been reported as well.  Microcephaly and the cranium can be misshapen. A high arched palate is often present and clefting has also been noted.  Micrognathia may be present. Some evidence of physical growth retardation is often evident.

Pituitary hypoplasia is not uncommon and may be associated with hypothyroidism and cryptorchidism with hypospadias, and a small or bifid scrotum.

The brain anomalies vary considerably.  Many patients have mild to moderate developmental delays with some learning difficulties. Sensorineural hearing loss is often present. Hypoplasia of the vermis, thinning of the corpus callosum, widening of the lateral ventricles, and occasional generalized cortical atrophy, at least in older individuals, have been described.

Genetics

This is an autosomal dominant condition caused by a point mutation in BMP4 (bone morphogenetic protein-4) (14q22-q23).  A number of chromosomal deletions involving this gene have also been identified in individuals who have this syndrome but since contiguous genes such as OTX2 and SIX6 may also be involved, the phenotype is more likely to be associated with other anomalies including genital hypoplasia, pituitary hypoplasia, absence of the optic nerves and/or chiasm, developmental delay, digital malformations, and cerebellar dysplasia.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Cataracts can be removed in selected individuals with potential visual function.  Socket prostheses should be considered in anophthalmia and extreme microphthalmia.  Low vision devices, Braille, and mobility training should be initiated early when appropriate.  Hearing evaluations should be done as soon as practical.

Learning specialists and special education facilities should be available for selected patients.  Polydactyly, syndactyly, skull, and cleft palate repairs may be indicated.

References
Article Title: 

Mutations in BMP4 cause eye, brain, and digit developmental anomalies: overlap between the BMP4 and hedgehog signaling pathways

Bakrania P, Efthymiou M, Klein JC, Salt A, Bunyan DJ, Wyatt A, Ponting CP, Martin A, Williams S, Lindley V, Gilmore J, Restori M, Robson AG, Neveu MM, Holder GE, Collin JR, Robinson DO, Farndon P, Johansen-Berg H, Gerrelli D, Ragge NK. Mutations in BMP4 cause eye, brain, and digit developmental anomalies: overlap between the BMP4 and hedgehog signaling pathways. Am J Hum Genet. 2008 Feb;82(2):304-19.

PubMed ID: 
18252212

Craniofacial-Deafness-Hand Syndrome

Clinical Characteristics
Ocular Features: 

This rare syndrome has anomalies in periocular structures but not in the eye itself.  The lid fissures are downward slanting with telecanthus and hypertelorism.  The nasolacrimal duct was missing in several individuals.

Systemic Features: 

The midface is generally flat with underdeveloped maxillary bones and absent or small nasal bones but there may be frontal bossing.  The nose appears hypoplastic with a broad, flat root resulting in dystopia canthorum.  Micrognathia and a high arched palate are sometimes present.   The sinuses are often underdeveloped.  There may be ulnar deviation of the hands and fingers while flexion contractures and clinodactyly of the 5th finger are often present.  A sensorineural hearing loss is present in many individuals.  No poliosis has been reported.

Genetics

This is an autosomal dominant condition secondary to mutations in the PAX3 gene (22q36.1) in at least some patients.  Changes in the same gene are responsible for types 1 and 3 of the Waardenburg syndrome (193500, 148820).  In fact, the major mutation, a heterozygous C-to-G transversion, has been identified in the same codon in both CDHS and Waardenburg 3 (148820) patients.

More patients need to be genotyped to clarify the clinical features distinctive of Waardenburg types 1 and 3 (193500, 148820) and CDHS syndrome.  Should we consider these conditions allelic or simply the result of variable expressivity?  The appearance of the nasal root and associated structures is similar and both conditions are associated with sensorineural hearing loss.  Type 3 Waardenburg syndrome (148820) often has a cleft palate and musculoskeletal deformities of the upper limbs and fingers.  So far, no pigmentation changes have been reported in CDHS.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Surgical release of contractures could be considered.

References
Article Title: 

Pages

Subscribe to RSS - micrognathia