micrognathia

Myopathy, Mitochondrial Anomalies, and Ataxia

Clinical Characteristics
Ocular Features: 

Ocular findings are variable.  One of three individuals with compound heterozygous mutations had a pigmentary retinopathy with pallor of the optic nerve but no visual abnormalities.  Her sister had only optic nerve pallor.  The eyes are described as "small" and "close-set".

No ocular findings were reported for the family with autosomal dominant inheritance.

Systemic Features: 

Ataxia, short stature, and gait difficulties from an early age are consistent findings.  Some patients are never able to walk.  Motor development is generally delayed.  Truncal and limb ataxia is a feature.  Some degree of intellectual disability is generally present and speech is often delayed.  

The face is long with a myopathic appearance.  Both micrognathia and a prominent jaw may be seen.  The palate is highly arched.  Patients are described as hypotonic and there is generalized muscle weakness both proximal and distal.  Distal sensory impairment has been described in the family with presumed dominant inheritance and there may be psychiatric symptoms of anxiety, depression, and schizophrenia.  Dysmetria with dysdiadochokinesis is often present and a fine intention tremor has been observed.

Mitochondria in fibroblasts exhibit abnormal dynamics and occur in a fragmented network.  Muscle biopsies reveal changes consistent with myopathy.  Serum creatine kinase may be elevated.

Genetics

Compound heterozygous mutations in the MSTO1 gene (1q22) have been found in two families with 3 affected individuals suggesting autosomal recessive inheritance.  In a third family, heterozygous mutations in the same gene were found in a mother and 3 of her adult children, consistent with autosomal dominant transmission.

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Fraser Syndrome 3

Clinical Characteristics
Ocular Features: 

Cryptophthalmos is always present.  The anterior chamber was described as 'abnormal' in several stillborn male fetuses.

Systemic Features: 

Low-set simple ears were noted in two stillborn fetuses.  Micrognathia and a broad and beaked nose with notched alae nasi were described together with a malformed and atretic larynx.  The fingers and toes may be short and cutaneous syndactyly may be present.  The position of the anus may be abnormal.  The lungs may have abnormal lobulation and appear hyperplastic and hyperechogenic.  The bladder and kidneys may be absent.

Genetics

Homozygous mutations in the GRIP1 gene (12q14.3) have been identified in this autosomal recessive condition.

Fraser syndrome 1 (219000) results from homozygous mutations in the FRAS1 gene.

Fraser syndrome 2 (617666) is caused by homozygous mutations in the FREM2 gene.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Mutations in GRIP1 cause Fraser syndrome

Vogel MJ, van Zon P, Brueton L, Gijzen M, van Tuil MC, Cox P, Schanze D, Kariminejad A, Ghaderi-Sohi S, Blair E, Zenker M, Scambler PJ, Ploos van Amstel HK, van Haelst MM. Mutations in GRIP1 cause Fraser syndrome. J Med Genet. 2012 Apr 17. [Epub ahead of print].

PubMed ID: 
22510445

Carey-Fineman-Ziter Syndrome

Clinical Characteristics
Ocular Features: 

Abnormal eye movements with prominent external ophthalmoplegia are hallmarks of this disease.  An oculomotor nerve palsy with limited abduction and some degree of facial palsy are usually present.  The Moebius sequence is present in many patients.  Epicanthal folds, downslanting lid fissures, and ptosis are frequently seen.

Systemic Features: 

Clinical signs are highly variable.  Unusual facies with features of the Pierre Robin complex are characteristic.  Micrognathia and retrognathia are often present with glossoptosis.  Hypotonia and failure to thrive are commonly seen.  Dysphagia and even absent swallowing likely contribute to this.  Respiratory insufficiency can be present from birth, often with laryngostenosis, and some patients develop pulmonary hypertension and restrictive lung disease as adults.  Progressive scoliosis may contribute to this.  Many patients have club feet with joint contractures.  Skull formation consisting of microcephaly, or macrocephaly, or plagiocephaly is commonly seen.  Cardiac septal defects are common.

Intellectual disability is present in some but not all individuals.  Neuronal heterotopias, enlarged ventricles, reduced white matter, a small brainstem, microcalcifications, and enlarged ventricles have been observed.

Genetics

Homozygous or compound heterozygosity of the MYMK gene (9q34) is responsible for this condition.  

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment for the general disorder has been reported.

References
Article Title: 

A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome

Di Gioia SA, Connors S, Matsunami N, Cannavino J, Rose MF, Gilette NM, Artoni P, de Macena Sobreira NL, Chan WM, Webb BD, Robson CD, Cheng L, Van Ryzin C, Ramirez-Martinez A, Mohassel P, Leppert M, Scholand MB, Grunseich C, Ferreira CR, Hartman T, Hayes IM, Morgan T, Markie DM, Fagiolini M, Swift A, Chines PS, Speck-Martins CE, Collins FS, Jabs EW, Bonnemann CG, Olson EN; Moebius Syndrome Research Consortium, Carey JC, Robertson SP, Manoli I, Engle EC. A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome. Nat Commun. 2017 Jul 6;8:16077. doi: 10.1038/ncomms16077.

PubMed ID: 
28681861

Möbius sequence, Robin complex, and hypotonia: severe expression of brainstem disruption spectrum versus Carey-Fineman-Ziter syndrome

Verloes A, Bitoun P, Heuskin A, Amrom D, van de Broeck H, Nikkel SM, Chudley AE, Prasad AN, Rusu C, Covic M, Toutain A, Moraine C, Parisi MA, Patton M, Martin JJ, Van Thienen MN. Mobius sequence, Robin complex, and hypotonia: severe expression of brainstem disruption spectrum versus Carey-Fineman-Ziter syndrome. Am J Med Genet A. 2004 Jun 15;127A(3):277-87.

PubMed ID: 
15150779

Retinitis Pigmentosa With or Without Skeletal Anomalies

Clinical Characteristics
Ocular Features: 

Downward slanting lid fissures may be detectable at birth as part of the general craniofacial dysmorphism.  Some degree of night blindness causes symptoms by the second decade of life and constricted visual fields with pigmented retinopathy and vessel narrowing can be detected.  The ERG shows reduced or absent responses.  The retinal phenotype is progressive.   

Systemic Features: 

Most but not all patients have skeletal anomalies.  Nonspecific craniofacial dysmorphology features are frequently present including frontal bossing, macrocephaly, low-set ears, large columella, hypoplastic nares, and malar hypoplasia.  A short neck, brachydactyly, and overall shortness of stature are often present.  Some individuals have nail dysplasia.  The proximal femoral metaphyses sometimes show chondrodysplasia.

There is often some degree of intellectual disability and there may be delays in speech, feeding, and walking.

Genetics

This disorder results from homozygous or compound heterozygous mutations in the CWC27 gene (5q12.3).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No general treatment has been reported.  Low vision aids and night vision devices may be helpful, especially for educational activities.

References
Article Title: 

Mutations in the Spliceosome Component CWC27 Cause Retinal Degeneration with or without Additional Developmental Anomalies

Xu M, Xie YA, Abouzeid H, Gordon CT, Fiorentino A, Sun Z, Lehman A, Osman IS, Dharmat R, Riveiro-Alvarez R, Bapst-Wicht L, Babino D, Arno G, Busetto V, Zhao L, Li H, Lopez-Martinez MA, Azevedo LF, Hubert L, Pontikos N, Eblimit A, Lorda-Sanchez I, Kheir V, Plagnol V, Oufadem M, Soens ZT, Yang L, Bole-Feysot C, Pfundt R, Allaman-Pillet N, Nitschke P, Cheetham ME, Lyonnet S, Agrawal SA, Li H, Pinton G, Michaelides M, Besmond C, Li Y, Yuan Z, von Lintig J, Webster AR, Le Hir H, Stoilov P; UK Inherited Retinal Dystrophy Consortium., Amiel J, Hardcastle AJ, Ayuso C, Sui R, Chen R, Allikmets R, Schorderet DF. Mutations in the Spliceosome Component CWC27 Cause Retinal Degeneration with or without Additional Developmental Anomalies. Am J Hum Genet. 2017 Apr 6;100(4):592-604.

PubMed ID: 
28285769

Encephalopathy, Early-Onset, With Brain Atrophy and Thin Corpus Callosum

Clinical Characteristics
Ocular Features: 

Optic atrophy is present in many patients and may be present early since lack of visual tracking or eye contact may be noted at birth.  Sparse eyebrows, upslanting palpebral fissures, and hypertelorism have also been reported.

Systemic Features: 

Severe hypotonia is present at birth often causing respiratory distress in the neonate.  Spasticity can develop later.  Growth failure with progressive microcephaly is present in infants.  Brain imaging often reveals diffuse atrophy of structures including the cerebellum, brainstem, spinal cord, and cerebrum.  Tongue fasciculations have been observed.   Micrognathia and widely spaced teeth are sometimes present.  Several patients have died during infancy.

Genetics

Homozygous mutations in the TBCD (17q25.3) are responsible for this disorder.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy

Flex E, Niceta M, Cecchetti S, Thiffault I, Au MG, Capuano A, Piermarini E, Ivanova AA, Francis JW, Chillemi G, Chandramouli B, Carpentieri G, Haaxma CA, Ciolfi A, Pizzi S, Douglas GV, Levine K, Sferra A, Dentici ML, Pfundt RR, Le Pichon JB, Farrow E, Baas F, Piemonte F, Dallapiccola B, Graham JM Jr, Saunders CJ, Bertini E, Kahn RA, Koolen DA, Tartaglia M. Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy. Am J Hum Genet. 2016 Oct 6;99(4):962-973.

PubMed ID: 
27666370

Biallelic TBCD Mutations Cause Early-Onset Neurodegenerative Encephalopathy

Miyake N, Fukai R, Ohba C, Chihara T, Miura M, Shimizu H, Kakita A, Imagawa E, Shiina M, Ogata K, Okuno-Yuguchi J, Fueki N, Ogiso Y, Suzumura H, Watabe Y, Imataka G, Leong HY, Fattal-Valevski A, Kramer U, Miyatake S, Kato M, Okamoto N, Sato Y, Mitsuhashi S, Nishino I, Kaneko N, Nishiyama A, Tamura T, Mizuguchi T, Nakashima M, Tanaka F, Saitsu H, Matsumoto N. Biallelic TBCD Mutations Cause Early-Onset Neurodegenerative Encephalopathy. Am J Hum Genet. 2016 Oct 6;99(4):950-961.

PubMed ID: 
27666374

Hypotonia, Infantile, with Psychomotor Retardation And Characteristic Facies 1

Clinical Characteristics
Ocular Features: 

Nystagmus, strabismus and sometimes optic atrophy have been noted.  Poor fixation may be present.   

Systemic Features: 

This progressive disorder can be evident at birth based on the facial dysmorphism.  The face is triangular, the forehead is prominent, the nose is small, the ears appear large and low-set.  The mouth appears wide with a thin upper lip.  Early development may be near normal for the first 6 months but thereafter psychomotor regression and slow physical growth are evident.  Patients have microcephaly and seldom achieve normal milestones.  Spasticity in the extremities and truncal hypotonia with distal muscle atrophy are evident.  The face appears triangular, the forehead is prominent, the nose is small, and the ears appear large and low-set.  Pectus carinatum and pes varus may be present.   Males often have cryptorchidism.

Brain imaging has revealed cerebellar atrophy and "while matter abnormalities".  Sural nerve biopsies show evidence of infantile neuroaxonal dystrophy.

Some individuals are less severely affected, retain the ability to speak, and are able to walk at least into the second decade of life.

Genetics

Based on transmission patterns this condition is inherited as an autosomal recessive disorder caused by mutations in in the NALCN gene (13q32.3-q33.1.

For somewhat similar disorders caused by mutations in other genes see IHPRF2 (616801) and IHPRF3 (616900).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Hypotonia, Infantile, with Psychomotor Retardation and Characteristic Facies 3

Clinical Characteristics
Ocular Features: 

Deep-set eyes with highly arched eyebrows have been described and poor fixation can be present.  Cortical visual impairment has been described.

Systemic Features: 

The neurologic abnormalities become evident soon after birth.  Hypotonia and decreased reflexes may be present early and often there is little psychomotor development subsequently.  Some patients have no or very little speech and may never sit, stand, or walk.  However, there is considerable variation in the clinical picture and other individuals are able to walk and may live into the third decade.  Brain imaging reveals a variety of abnormalities including cerebellar and cerebral hypoplasia.  Respiratory difficulties and poor feeding are often present.

The facial dysmorphism may include brachycephaly with a broad forehead and narrowing of the temporal regions.  The nose may be small and the mouth appears large in the presence of micrognathia and a thin upper lip.

Genetics

This is an autosomal recessive condition as the result of homozygous or compound heterozygous mutations in the TBCK gene (4q24). 

Other similar conditions include IHPRF2 (616801) (with homozygous mutations in UNC80 and IHPRF1 (615419) (with homozygous mutations in NALCN) whose ocular features may include strabismus, nystagmus, and poor visual fixation.    

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available.

References
Article Title: 

Mutations in TBCK, Encoding TBC1-Domain-Containing Kinase, Lead to a Recognizable Syndrome of Intellectual Disability and Hypotonia

Bhoj EJ, Li D, Harr M, Edvardson S, Elpeleg O, Chisholm E, Juusola J, Douglas G, Guillen Sacoto MJ, Siquier-Pernet K, Saadi A, Bole-Feysot C, Nitschke P, Narravula A, Walke M, Horner MB, Day-Salvatore DL, Jayakar P, Vergano SA, Tarnopolsky MA, Hegde M, Colleaux L, Crino P, Hakonarson H. Mutations in TBCK, Encoding TBC1-Domain-Containing Kinase, Lead to a Recognizable Syndrome of Intellectual Disability and Hypotonia. Am J Hum Genet. 2016 Apr 7;98(4):782-8.

PubMed ID: 
27040691

Recessive Inactivating Mutations in TBCK, Encoding a Rab GTPase-Activating Protein, Cause Severe Infantile Syndromic Encephalopathy

Chong JX, Caputo V, Phelps IG, Stella L, Worgan L, Dempsey JC, Nguyen A, Leuzzi V, Webster R, Pizzuti A, Marvin CT, Ishak GE, Ardern-Holmes S, Richmond Z; University of Washington Center for Mendelian Genomics, Bamshad MJ, Ortiz-Gonzalez XR, Tartaglia M, Chopra M, Doherty D. Recessive Inactivating Mutations in TBCK, Encoding a Rab GTPase-Activating Protein, Cause Severe Infantile Syndromic Encephalopathy. Am J Hum Genet. 2016 Apr 7;98(4):772-81.

PubMed ID: 
27040692

Developmental Delay with Short Stature, Dysmorphic Features, and Sparse Hair

Clinical Characteristics
Ocular Features: 

Patients may have downward-slanting lid fissures, hypertelorism, epicanthal folds, and sparse eyebrows and eyelashes.

Systemic Features: 

Patients have scaphocephaly with or without craniosynostosis and facial dysmorphism with a depressed nasal bridge and micrognathia.  Short stature, sparse hair, and developmental delay are characteristic.  Hypoplastic toenails and dental anomalies are present.  Brain imaging may show Dandy-Walker malformations and cerebellar vermis hypoplasia.  The kidneys may have focal interstitial nephritis and there may be intermittent hematuria and proteinuria in the presence of otherwise normal renal function.  Cardiac septal defects have been noted.

Genetics

Homozygous mutations in the DPH1 gene (17p13.3) are responsible for this disorder.  Two families have been reported with this condition. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

Matching two cohorts validates DPH1 as a gene responsible for autosomal recessive intellectual disability with short stature, craniofacial, and ectodermal anomalies

Loucks CM, Parboosingh JS, Shaheen R, Bernier FP, McLeod DR, Seidahmed MZ, Puffenberger EG, Ober C, Hegele RA, Boycott KM, Alkuraya FS, Innes AM. Matching two independent cohorts validates DPH1 as a gene responsible for autosomal recessive intellectual disability with short stature, craniofacial, and ectodermal anomalies. Hum Mutat. 2015 Oct;36(10):1015-9.

PubMed ID: 
26220823

Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families

Alazami AM, Patel N, Shamseldin HE, Anazi S, Al-Dosari MS, Alzahrani F, Hijazi H, Alshammari M, Aldahmesh MA, Salih MA, Faqeih E, Alhashem A, Bashiri FA, Al-Owain M, Kentab AY, Sogaty S, Al Tala S, Temsah MH, Tulbah M, Aljelaify RF, Alshahwan SA, Seidahmed MZ, Alhadid AA, Aldhalaan H, AlQallaf F, Kurdi W, Alfadhel M, Babay Z, Alsogheer M, Kaya N, Al-Hassnan ZN, Abdel-Salam GM, Al-Sannaa N, Al Mutairi F, El Khashab HY, Bohlega S, Jia X, Nguyen HC, Hammami R, Adly N, Mohamed JY, Abdulwahab F, Ibrahim N, Naim EA, Al-Younes B, Meyer BF, Hashem M, Shaheen R, Xiong Y, Abouelhoda M, Aldeeri AA, Monies DM, Alkuraya FS. Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Rep. 2015 Jan 13;10(2):148-61.

PubMed ID: 
25558065

Vici Syndrome

Clinical Characteristics
Ocular Features: 

Congenital cataracts, both unilateral and bilateral are common.  The fundus appears hypopigmented. Nystagmus, optic neuropathy, and mild ptosis have been reported.  Nothing is known regarding acuity. 

Systemic Features: 

Infants at birth have striking hypotonia with a weak cry and feeding difficulties.  Dysmorphic features such as micrognathia, microcephaly, low-set ears, some degree of generalized hypopigmentation (hair and skin), and a broad nose with a long philtrum may be present. The face may appear triangular.  Cleft lip and palate may be present.  Evidence of cardiac dysfunction may also be present early with both dilated and hypertrophic cardiomyopathy reported.  Hearing loss has been reported in some individuals.  Recurrent infections are common and immunologic studies have revealed, in some patients, granulocytopenia, low T cell counts (primarily T4+ cells), thymic dysplasia, and low levels of IgG.  Seizures may occur.  Liver dysfunction has been variably reported.

Neurological and brain evaluations have reported agenesis of the corpus callosum, defects in the septum pellucidum, and hypoplasia of the cerebellar vermis along with pontocerebellar hypoplasia.  Psychomotor retardation is severe in most individuals along with general growth retardation.

Histologic studies of skeletal muscle fibers have shown considerable variation in fiber size, centralized nuclei, fucsinophilic inclusions, and enlarged abnormal mitochondria.  Other central nervous system abnormalities include in some individuals a paucity of white matter, schizencephaly, neuronal heterotopias, and enlargement of the ventricles.

The cumulative effects of these multiorgan abnormalities lead to death within the first year or two of life, generally of heart failure or sepsis. 

Genetics

Homozygous or compound heterozygous mutations in the EPG5 gene (18q12.3) have been associated with this condition.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Vici syndrome: a

Byrne S, Dionisi-Vici C, Smith L, Gautel M, Jungbluth H. Vici syndrome: a
review
. Orphanet J Rare Dis. 2016 Feb 29;11(1):

PubMed ID: 
4772338

Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy

Cullup T, Kho AL, Dionisi-Vici C, Brandmeier B, Smith F, Urry Z, Simpson MA, Yau S, Bertini E, McClelland V, Al-Owain M, Koelker S, Koerner C, Hoffmann GF, Wijburg FA, ten Hoedt AE, Rogers RC, Manchester D, Miyata R, Hayashi M, Said E, Soler D, Kroisel PM, Windpassinger C, Filloux FM, Al-Kaabi S, Hertecant J, Del Campo M, Buk S, Bodi I, Goebel HH, Sewry CA, Abbs S, Mohammed S, Josifova D, Gautel M, Jungbluth H. Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy. Nat Genet. 2013 Jan;45(1):83-7.

PubMed ID: 
23222957

Acrofacial Dysostosis, Cincinnati Type

Clinical Characteristics
Ocular Features: 

The periocular features are part of the general facial dysmorphism.  The lid fissures slant downward, and the orbits appear inferiorly displaced.  'Clefts' (colobomas?) of the lower eyelids and sometimes the upper may be evident.  The medial eyelashes were absent in one patient. 

Systemic Features: 

The extraocular features reported so far are based on only three patients and there is considerable variation.  The head is usually small and patients may be short in stature.  The zygomatic arches, the maxillae and the mandibles are hypoplastic as is the midface.  There may be anotia and severe conductive hearing loss.  The pinnae can be large and are sometimes low-set.  Inconsistent short limbs with hip dysplasia and femoral bowing have been reported.  Brachydactyly is also a feature.

Genetics

Heterozygous mutations in the POLR1A gene (2p11) seem to be responsible for this condition.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment is available for the overall condition but individual anomalies such as lid 'clefts' can be surgically repaired. Severe micrognathia may require tracheostomy at birth.

References
Article Title: 

Pages

Subscribe to RSS - micrognathia