obesity

Spastic Paraplegia, Intellectual Disability, Nystagmus, and Obesity

Clinical Characteristics
Ocular Features: 

Patients have deep-set eyes with nystagmus, reduced vision, and often an esotropia perhaps secondary to hypermetropia.  In one of 3 reported patients the optic discs were described pale.

Systemic Features: 

Prominent foreheads are present at birth along with full cheeks and a prominent forehead.  Children grow rapidly in the first year eventually reaching the 90th percentiles in weight, height, and head circumference although neurologically they are developmentally delayed.  Speech and walking may be delayed as well.  While limbs have increased tone together with hyperreflexia, the trunk exhibits hypotonia.

Brain imaging reveals delayed myelination, dilated lateral ventricles, reduced while matter, and cerebral atrophy.

Genetics

Heterozygous mutations in the KIDINS220 gene (2p25.1) have been identified in 3 unrelated patients.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Heterozygous KIDINS220/ARMS nonsense variants cause spastic paraplegia, intellectual disability, nystagmus, and obesity

Josifova DJ, Monroe GR, Tessadori F, de Graaff E, van der Zwaag B, Mehta SG; DDD Study., Harakalova M, Duran KJ, Savelberg SM, Nijman IJ, Jungbluth H, Hoogenraad CC, Bakkers J, Knoers NV, Firth HV, Beales PL, van Haaften G, van Haelst MM. Heterozygous KIDINS220/ARMS nonsense variants cause spastic paraplegia, intellectual disability, nystagmus, and obesity. Hum Mol Genet. 2016 Jun 1;25(11):2158-2167.

PubMed ID: 
27005418

Spastic Paraplegia 11

Clinical Characteristics
Ocular Features: 

Gaze evoked nystagmus and pigmentation in the macula are components of this syndrome and adults have some degree of retinal degeneration with poor vision eventually.  Optic atrophy and ptosis have been reported but rarely.   

Systemic Features: 

his progressive condition nay have its onset in childhood or early adolescence although rarely it first appears in adulthood.  Obesity is a component in older individuals.  Loss of ambulation usually occurs within 10 years of the onset of gait difficulties.  Hyperreflexia and spasticity develop early while ataxia, urinary sphincter disturbances, extensor plantar responses, and dysarthria appear later.  Amyotrophy is frequently seen in the thenar and hypothenar muscles.  Children have learning difficulties while cognitive decline and frank mental retardation occur somewhat later.  

Peripheral nerve biopsy may reveal hypomyelination and loss of unmyelinated nerve fibers.  MRI imaging in some individuals shows a thin or absent corpus callosum and cortical atrophy. 

Genetics

Homozygous mutations in the gene SPG11 (15q21.1) encoding spatacsin are responsible for this disorder. 

See spastic paraplegia 15 (Kjellin syndrome) (270700) and spastic paraplegia 7 (607259) for other disorders with retinal degeneration, optic atrophy, and nystagmus.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

None known.

References
Article Title: 

Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum

Stevanin G, Santorelli FM, Azzedine H, Coutinho P, Chomilier J, Denora PS, Martin E, Ouvrard-Hernandez AM, Tessa A, Bouslam N, Lossos A, Charles P, Loureiro JL, Elleuch N, Confavreux C, Cruz VT, Ruberg M, Leguern E, Grid D, Tazir M, Fontaine B, Filla A, Bertini E, Durr A, Brice A. Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nat Genet. 2007 Mar;39(3):366-72.

PubMed ID: 
17322883

Retinitis Pigmentosa 71

Clinical Characteristics
Ocular Features: 

Night blindness is noted in the first or second decades of life.  The fundus picture in this condition resembles classic retinitis pigmentosa with attenuated vessels, RPE anomalies with bone spicule clumping and areas of atrophy, and optic disc pallor.  Several patients had optic nerve drusen.  The retina appears to have microcysts, especially in the macula, and the outer retina is thinned.  

Systemic Features: 

Only a few patients have been reported with this form of RP and the full phenotype is unknown.  Some individuals are obese and one patient in addition had postaxial polydactyly and hypercholesterolemia suggestive of a Bardet-Biedl-like phenotype.  No reported patients have had rib dysplasia.

Genetics

Homozygous or compound heterozygous mutations in the IFT172 gene (2p23.3) have been identified in this condition.

The same gene is mutated in the recessive short-rib thoracic dysplasia 10 syndrome with or without polydactyly (615630).  Individuals with the short-rib syndrome may have night blindness and fundus changes resembling retinitis pigmentosa.

Because of the phenotypic overlap with other conditions such as Bardet-Biedl syndrome, the short-rib thoracic 10 syndrome (615630), Majewski syndrome (263520), Jeune syndrome (208520), short-rib thoracic dysplasia 9 (266920), and certain types of polycystic diseases of the kidney with abnormalities of the cilia, it has been suggested that RP71 should be classified as a syndromic ciliopathy.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome

Bujakowska KM, Zhang Q, Siemiatkowska AM, Liu Q, Place E, Falk MJ, Consugar M, Lancelot ME, Antonio A, Lonjou C, Carpentier W, Mohand-Said S, den Hollander AI, Cremers FP, Leroy BP, Gai X, Sahel JA, van den Born LI, Collin RW, Zeitz C, Audo I, Pierce EA. Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome. Hum Mol Genet. 2015 Jan 1;24(1):230-42.

PubMed ID: 
25168386

CHOPS Syndrome

Clinical Characteristics
Ocular Features: 

There is usually some degree of proptosis and apparent hypertelorism.  The eyebrows are bushy and the eyelashes are luxurious.  One of three patients had cataracts and another had mild optic atrophy.

Systemic Features: 

The overall facial appearance may resemble Cornelia de Lange syndrome with hypertrichosis and a coarse, round facies.  Head circumference is low normal.  Septal defects and a patent ductus arteriosus are often present.  Laryngeal and tracheal malacia predispose to recurrent pulmonary infections and chronic lung disease.  Skeletal dysplasia includes brachydactyly and anomalous vertebral bodies resulting in short stature (3rd percentile).  Genitourinary abnormalities include cryptorchidism, horseshoe kidney, and vesiculoureteral reflux.  Delayed gastric emptying and reflux have been reported.

Genetics

Heterozygous mutations in the AFF4 gene (5q31.1) have been identified in 3 unrelated individuals with this condition.  No familial cases have been identified.  The gene is a core component of the super elongation complex that is critical to transcriptional elongation during embryogenesis.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

There is no treatment for the general disorder.  Tracheostomy was required in 2 of three reported patients. 

References
Article Title: 

Germline gain-of-function mutations in AFF4 cause a developmental syndrome functionally linking the super elongation complex and cohesin

Izumi K, Nakato R, Zhang Z, Edmondson AC, Noon S, Dulik MC, Rajagopalan R, Venditti CP, Gripp K, Samanich J, Zackai EH, Deardorff MA, Clark D, Allen JL, Dorsett D, Misulovin Z, Komata M, Bando M, Kaur M, Katou Y, Shirahige K, Krantz ID. Germline gain-of-function mutations in AFF4 cause a developmental syndrome functionally linking the super elongation complex and cohesin. Nat Genet. 2015 Apr;47(4):338-44.

PubMed ID: 
25730767

Pseudohypoparathyroidism, Type 1A

Clinical Characteristics
Ocular Features: 

Cataracts and nystagmus are sometimes present.  Optic neuritis and papilledema have been reported and can result in optic atrophy.  The combination of cataracts and swelling of the optic nerves in children requires evaluation for hypocalcemia.

Systemic Features: 

The title refers to a group of conditions that have organ resistance to parathyroid hormone.  The phenotype is variable since there usually is a usually some degree of end-organ resistance to other hormones such as gonadotropins and TSH as in the PHP1A disorder described here.  The grouped clinical features are often referred to as Albright hereditary oseodystrophy or AHO.

Short stature with a short neck, a round face, chubby cheeks, and a depressed nasal bridge are usually present.  There may be cognitive deficits and some patients are considered to be mentally retarded.  The fourth and fifth metacarpals and sometimes metatarsals are characteristically short.   The teeth are late to erupt and can have an enamel deficit.  End organ resistance to other hormones may lead to signs of hypothyroidism and hypogonadism.  Calcification of subcutaneous tissues can result in palpable hard nodules and calcium deposition in basal ganglia and choroidal plexus may be demonstrable.  Some patients experience hypocalcemic tetany and seizures.  Hypocalcemia and hyperphosphatemia are often present along with elevated serum parathyroid hormone levels.

Genetics

This transmission pattern is likely modified by the effects of imprinting which also can modify the phenotype.  Mutltigenerational family patterns have an excess of maternal transmission.  The full phenotype is more likely expressed among maternally transmitted cases whereas partial or incomplete expression is more often seen among individuals who received the paternal allele. 

Heterozygous muttions in the GNAS1 gene (20q13.32) plays a role in this disease.  Signal transduction failure likely plays a major role in the failure of organs to respond to the appropriate hormone.

Several subtypes of pseudohypoparathyroidism have been reported but some do not have ocular signs.  However, type 1C (612462) patients can have cataracts and nystagmus with an almost identical phenotype to that of IA and may be the same condition.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Treatment focuses on normalization of calcium and phosphate serum levels.  A deficiency of vitamin D should also be corrected and has been reported to correct at least some of the lens opacities.  Cataract removal can be considered.

References
Article Title: 

Alström Syndrome

Clinical Characteristics
Ocular Features: 

Progressive failure of rods and cones begins in the first year of life and inevitably leads to blindness.  Central vision is lost first and nystagmus in early childhood results.   Photophobia can be evident in the first year of life.  Early ERGs show severe impairment of cone responses with little or no rod dysfunction.  In the second and third decades all rod and cone responses are extinguished.  Vision can be less than 20/400 by the age of 10 years and usually all light perception is lost by the beginning of the third decade.  Pale optic nerves with retinal arteriorlar narrowing and posterior subcapsular cataracts have been seen.

Systemic Features: 

This is a multisystem disease with onset in the first year of life.  Infants may have a normal birth weight but develop truncal obesity in the first year.  Hearing loss is evident in the first decade.  Insulin resistant type 2 diabetes mellitus with hyperinsulinemia often occurs in childhood and may be accompanied by hypothyroidism and hypogonadotropic hypogonadism.  Acanthosis nigricans and some degree of pulmonary dysfunction are common.  The majority of individuals (70%) develop restrictive or dilated cardiomyopathy, many in the first months of life, resulting in cardiac failure.  The liver may become cirrhotic and renal failure occurs late.  Intelligence is usually normal but many patients (25-30%) have early delays in their developmental milestones perhaps secondary to growth hormone deficiency which has been reported (98% are short in stature).  Lifespan is short and many die in childhood.  Few live beyond the age of 40 years.

Alstrom syndrome has some similarities to Bardet-Biedl syndrome (209900) but differs in the absence of mental deficiency and polydactyly.

Genetics

This is an autosomal recessive disorder resulting from homozygous mutations in the ALMS1 gene on chromosome 2 (2p13).  The ALMS1 protein product is found in many cells throughout the body and is located in centrosomes and the base of cilia.  Its function is unknown.

More than 320 mutations have been reported. However, many cases remain in which no mutation has been found suggesting additional genetic heterogeneity remains.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available for the basic disease.

References
Article Title: 

Alström Syndrome: Mutation Spectrum of ALMS1

Marshall JD, Muller J, Collin GB, Milan G, Kingsmore SF, Dinwiddie D, Farrow EG, Miller NA, Favaretto F, Maffei P, Dollfus H, Vettor R, Naggert JK. Alstrom Syndrome: Mutation Spectrum of ALMS1. Hum Mutat. 2015 Apr 2. doi: 10.1002/humu.22796. [Epub ahead of print].

PubMed ID: 
25846608

Alström syndrome

Marshall JD, Beck S, Maffei P, Naggert JK. Alstrom syndrome. Eur J Hum Genet. 2007 Dec;15(12):1193-202.

PubMed ID: 
17940554

Retinal Dystrophy and Obesity

Clinical Characteristics
Ocular Features: 

The age of onset of symptoms is unknown but based on the report of a single family with three affected sibs, it may occur early in the second decade. Patients may note some loss of night vision and the visual fields are restricted.  The ERG responses are consistent with a generalized rod-cone dystrophy.  Fundoscopy reveals a generalized RPE atrophy together with arteriolar attenuation, peripheral pigmentary mottling and scattered white dots.  A nonspecific dyschromatopsia can be demonstrated but the fovea is relatively normal and central acuity is remarkably good.  Little is known about disease progression but an 18 year old male reported decreasing vision since the age of 11 years.  

Systemic Features: 

Obesity and a high BMI may be present.

Genetics

Homozygous mutations in the TUB gene (11p15) segregated with this disorder in a sibship from a consanguineous family.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Smith-Magenis Syndrome

Clinical Characteristics
Ocular Features: 

Ocular abnormalities have been found in the majority of patients.  Microcornea, myopia, strabismus and iris dysplasia are the most common.  Rare patients have iris colobomas or correctopia.  The eyes appear deep-set and lid fissures are upward slanting.

Systemic Features: 

The facial features are considered to be distinctive, characterized by a broad, square face, prominent forehead, broad nasal bridge, and midface hypoplasia.  These and other features appear more pronounced with age as in the size of the jaw which is underdeveloped in infancy and eventually becomes prognathic.  Most patients have developmental delays, speech and motor deficits, cognitive impairments and behavioral abnormalities.  Hypotonia, hyporeflexia, failure to thrive, lethargy, and feeding difficulties are common in infants.  Older individuals have REM sleep disturbances with self-destructive behaviors, aggression, inattention, hyperactivity, and impulsivity.  Short stature, hypodontia, brachydactyly, hearing loss, laryngeal anomalies, and peripheral neuropathy are common. Seizures are uncommon.

The behavioral profile of this syndrome can resemble that of autism spectrum disorders although symptoms of compulsivity are more mild.

A related developmental disorder known as Potacki-Lupski syndrome (610883) involving the same locus on chromosome 17 has a similar behavioral profile.  Ocular and systemic malformations may be less severe though.

Genetics

Most patients (90%) with the Smith-Magenis syndrome have interstitial deletions in the short arm of chromosome 17 (17p11.2).  However, it is included here since a few have heterozygous molecular mutations in the RAI1 gene which is located in this region.  While there is considerable phenotypic overlap, individuals with chromosomal deletions have the more severe phenotype as might be expected.  For example, those with RAI1 mutations tend to be obese and are less likely to exhibit short stature, cardiac anomalies, hypotonia, hearing loss and motor delays than seen in patients with a deletion in chromosome 17.  However, the phenotype is highly variable among patients with deletions depending upon the nature and size of the deletion.

The retinoic acid induced 1 gene (RAI1) codes for a transcription factor whose activity is reduced by mutations within it.

Familial cases are rare and reproductive fitness is virtually zero.  If parental chromosomes are normal, the risk for recurrence in sibs is less than 1%.  Males and females are equally affected.

In Potocki-Lupski syndrome (610883) there is duplication of the 17p11.2 microdeletion as the reciprocal recombination product of the SMS deletion.   

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Medical monitoring, psychotropic medications and behavioral therapies are all useful.  Special education and vocational training may be helpful for those less severely affected.

References
Article Title: 

Characterization of Potocki-Lupski syndrome (dup(17)(p11.2p11.2)) and

Potocki L, Bi W, Treadwell-Deering D, Carvalho CM, Eifert A, Friedman EM,
Glaze D, Krull K, Lee JA, Lewis RA, Mendoza-Londono R, Robbins-Furman P, Shaw C,
Shi X, Weissenberger G, Withers M, Yatsenko SA, Zackai EH, Stankiewicz P, Lupski
JR. Characterization of Potocki-Lupski syndrome (dup(17)(p11.2p11.2)) and
delineation of a dosage-sensitive critical interval that can convey an autism
phenotype
. Am J Hum Genet. 2007 Apr;80(4):633-49.

PubMed ID: 
17357070

Carpenter Syndrome

Clinical Characteristics
Ocular Features: 

A variety of ocular anomalies have been reported in Carpenter syndrome with none being constant or characteristic.  The inner canthi are often spaced widely apart and many have epicanthal folds and a flat nasal bridge.  Other reported abnormalities are nystagmus, foveal hypoplasia, corneal malformations including microcornea, corneal opacity, and mild optic atrophy and features of pseudopapilledema.

Systemic Features: 

Premature synostosis involves numerous cranial sutures with the sagittal suture commonly involved causing acrocephaly (tower skull).  Asymmetry of the skull and a 'cloverleaf' deformity are often present.  The polydactyly is preaxial and some degree of syndactyly is common especially in the toes.  The digits are often short and may be missing phalanges.  Some patients are short in stature.  Structural brain defects may be widespread including atrophy of the cortex and cerebellar vermis.  Septal defects in the heart are found in about one-third of patients.  The ears can be low-set and preauricular pits may be seen.  Some but not all patients have obesity and a degree of mental retardation.

Genetics

This is an autosomal recessive syndrome caused by a mutation in the RAB23 gene (6p12.1-q12).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment of the ocular defects is necessary in most cases. Craniectomy may be required in cases with severe synostosis.

References
Article Title: 

Carpenter syndrome

Hidestrand P, Vasconez H, Cottrill C. Carpenter syndrome. J Craniofac Surg. 2009 Jan;20(1):254-6.

PubMed ID: 
19165041

RAB23 mutations in Carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity

Jenkins D, Seelow D, Jehee FS, Perlyn CA, Alonso LG, Bueno DF, Donnai D, Josifova D, Mathijssen IM, Morton JE, Orstavik KH, Sweeney E, Wall SA, Marsh JL, Nurnberg P, Passos-Bueno MR, Wilkie AO. RAB23 mutations in Carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity. Am J Hum Genet. 2007 Jun;80(6):1162-70. Erratum in: Am J Hum Genet. 2007 Nov;81(5):1114. Josifiova, Dragana [corrected to Josifova, Dragana].

PubMed ID: 
17503333

Bardet-Biedl Syndromes

Clinical Characteristics
Ocular Features: 

The term Bardet-Biedl is applied to a clinically and genetically diverse group of disorders, of which at least 21 entities (BBS1-BBS21) are recognized.  This discussion is generically relevant to all of the phenotypes since the retinal dystrophy is common to all.

A progressive rod-cone dystrophy is a cardinal feature of all forms of Bardet-Biedl syndrome.  However, a subset of patients have primary cone degeneration.  In at least some forms of this syndrome, the cause seems to be a defect in the cilia that impairs the intraciliary protein transport between the inner and outer segments of the photoreceptors.  Vision loss has an early onset and usually progresses rapidly with severe loss of central and peripheral vision by the second or third decade of life.  Night blindness may be evident by 7 or 8 years of age.  The ERG is not recordable even in early childhood.  Pigmentary changes in the retina are often labeled retinitis pigmentosa but they are atypical for the usual disease.  Early changes are more characteristic of atrophy with a paucity of pigment but later the bone spicule pattern of hyperpigmentation appears.  The macula can appear atrophic and sometimes has a bull's eye pattern.  Optic atrophy and retinal arteriole narrowing may be seen.  Bardet-Biedl syndrome is clinically similar to Biemond syndrome (210350) except for iris colobomas that occur in the latter disorder.

Systemic Features: 

Obesity, mental retardation, renal disease, and hepatic fibrosis with syndactyly, brachydactyly, and post-axial polydactyly are characteristic.  The degree of mental handicap varies widely.  Diabetes mellitus is present in about one-third of patients.  Structural deformities of genitalia as well as hypogonadism and menstrual irregularities often occur as in some other disorders but the association of severe vision loss and characteristic retinal changes are diagnostically helpful.  Kidney failure secondary to cystic nephronophthisis or other renal malformations is common. Hypercholesterolemia is found in many patients.  Many patients have motor difficulties, appearing clumsy and unsteady.  Emotional lability and inappropriate outbursts can be part of these syndromes as well.

Genetics

The syndromes of Bardet-Biedl are inherited in an autosomal recessive pattern.  At least 21 mutations have been identified.  Not all cases are caused by homozygosity of the same mutation since compound heterozygosity at two loci may also cause similar phenotypes.

Laurence-Moon syndrome (245800) is considered part of the Bardet-Biedl group of diseases in this database. 

Mutations in PNPLA6 have been found in some individuals with a form of Bardet-Biedl syndrome as well as in Boucher-Neuhauser Syndrome (215470) also known as Chorioretinopathy, Ataxia, Hypogonadism Syndrome, and Trichomegaly Plus Syndrome (275400), in this database.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment exists for these syndromes but organ specific therapy may be helpful.

Studies in a mice model suggest that the neural retina may at least partially recover in type 1 following subretinal injection of viral vectors containing the wild-type bbs1 gene.

 

References
Article Title: 

Bardet-Biedl Syndrome

Suspitsin EN, Imyanitov EN. Bardet-Biedl Syndrome. Mol Syndromol. 2016 May;7(2):62-71.

PubMed ID: 
27385362

Predominantly cone-system dysfunction as rare form of retinal degeneration in patients with molecularly confirmed Bardet-Biedl Syndrome

Scheidecker S, Hull S, Perdomo Y, Studer F, Pelletier V, Muller J, Stoetzel C, Schaefer E, Defoort-Dhellemmes S, Drumare I, Holder Graham E, Hamel Christian P, Webster Andrew R, Moore Anthony T, Puech B, Dollfus Helene J. Predominantly cone-system dysfunction as rare form of retinal degeneration in patients with molecularly confirmed Bardet-Biedl Syndrome. Am J Ophthalmol. 2015 May 14. [Epub ahead of print]. 

PubMed ID: 
25982971

Neuropathy target esterase impairments cause Oliver-McFarlane and Laurence-Moon syndromes

Hufnagel RB, Arno G, Hein ND, Hersheson J, Prasad M, Anderson Y, Krueger LA, Gregory LC, Stoetzel C, Jaworek TJ, Hull S, Li A, Plagnol V, Willen CM, Morgan TM, Prows CA, Hegde RS, Riazuddin S, Grabowski GA, Richardson RJ, Dieterich K, Huang T, Revesz T, Martinez-Barbera JP, Sisk RA, Jefferies C, Houlden H, Dattani MT, Fink JK, Dollfus H, Moore AT, Ahmed ZM. Neuropathy target esterase impairments cause Oliver-McFarlane and Laurence-Moon syndromes. J Med Genet. 2015 Feb;52(2):85-94.

PubMed ID: 
25480986

Mutations in IFT172 Cause Isolated Retinal Degeneration and Bardet-Biedl Syndrome

Bujakowska KM, Zhang Q, Siemiatkowska AM, Liu Q, Place E, Falk MJ, Consugar M, Lancelot ME, Antonio A, Lonjou C, Carpentier W, Mohand-Sayid S, den Hollander AI, Cremers FP, Leroy BP, Gai X, Sahel JA, van den Born LI, Collin RW, Zeitz C, Audo I, Pierce EA. Mutations in IFT172 Cause Isolated Retinal Degeneration and Bardet-Biedl Syndrome. Hum Mol Genet. 2014 Aug 28.  [Epub ahead of print].

PubMed ID: 
25168386

Pages

Subscribe to RSS - obesity