telecanthus

Carpenter Syndrome

Clinical Characteristics
Ocular Features: 

A variety of ocular anomalies have been reported in Carpenter syndrome with none being constant or characteristic.  The inner canthi are often spaced widely apart and many have epicanthal folds and a flat nasal bridge.  Other reported abnormalities are nystagmus, foveal hypoplasia, corneal malformations including microcornea, corneal opacity, and mild optic atrophy and features of pseudopapilledema.

Systemic Features: 

Premature synostosis involves numerous cranial sutures with the sagittal suture commonly involved causing acrocephaly (tower skull).  Asymmetry of the skull and a 'cloverleaf' deformity are often present.  The polydactyly is preaxial and some degree of syndactyly is common especially in the toes.  The digits are often short and may be missing phalanges.  Some patients are short in stature.  Structural brain defects may be widespread including atrophy of the cortex and cerebellar vermis.  Septal defects in the heart are found in about one-third of patients.  The ears can be low-set and preauricular pits may be seen.  Some but not all patients have obesity and a degree of mental retardation.

Genetics

This is an autosomal recessive syndrome caused by a mutation in the RAB23 gene (6p12.1-q12).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment of the ocular defects is necessary in most cases. Craniectomy may be required in cases with severe synostosis.

References
Article Title: 

Carpenter syndrome

Hidestrand P, Vasconez H, Cottrill C. Carpenter syndrome. J Craniofac Surg. 2009 Jan;20(1):254-6.

PubMed ID: 
19165041

RAB23 mutations in Carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity

Jenkins D, Seelow D, Jehee FS, Perlyn CA, Alonso LG, Bueno DF, Donnai D, Josifova D, Mathijssen IM, Morton JE, Orstavik KH, Sweeney E, Wall SA, Marsh JL, Nurnberg P, Passos-Bueno MR, Wilkie AO. RAB23 mutations in Carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity. Am J Hum Genet. 2007 Jun;80(6):1162-70. Erratum in: Am J Hum Genet. 2007 Nov;81(5):1114. Josifiova, Dragana [corrected to Josifova, Dragana].

PubMed ID: 
17503333

Axenfeld-Rieger Syndrome, Type 1

Clinical Characteristics
Ocular Features: 

Axenfeld-Rieger syndrome consists of a heterogeneous group of disorders with overlapping features.  Common to all types are the presence of ocular, dental, facial, skeletal abnormalities and autosomal dominant inheritance.  Anterior chamber dysgenesis of some form is universally present and severe glaucoma occurs in 50% of patients.  This may have its onset in childhood with typical symptoms of congenital glaucoma such as photophobia, excessive tearing and corneal clouding.  Hypoplasia of the iris is common and when progressive may result in an ectopic pupil and/or pseudopolycoria.  Iris insertion and Schwalbe's line are often anteriorly displaced with iridocorneal adhesions, a pattern that leads to the inclusion of this disorder among those with iridogoniodysgenesis or anterior chamber dysgenesis.  Pupillary ectropion of the posterior pigmented layer of the iris may be seen.

There is considerable clinical overlap among conditions with iris dysgenesis.  Some patients with typical systemic features of Axenfeld-Rieger syndrome may even have typical anterior chamber features of Axenfeld-Rieger anomaly in one eye and severe iris hypoplasia resembling aniridia in the other.

Systemic Features: 

Dental anomalies and mid-facial hypoplasia secondary to underdeveloped maxillary sinuses are among the most common systemic features in type 1.  The nasal root often appears abnormally broad and the lower lip appears to protrude. The teeth are frequently small and conical in shape with wide spaces between them (diastema).  Some teeth may be missing.  The umbilicus may fail to involute normally and retains excessive, redundant skin that sometimes leads to the erroneous diagnosis of an umbilical hernia for which unnecessary surgery may be performed.  Hypospadius is frequently present while cardiac defects, sensorineural deafness, and anal stenosis are less common.

Genetics

There is clinical and genetic heterogeneity in this syndrome and precise classification of many families remains elusive without knowing the genotype.  Mutations in at least four genes are responsible and all are are responsible for phenotypes transmitted in autosomal dominant patterns.  Type 1 discussed here is caused by a mutation in the homeobox transcription factor gene, PITX2, located at 4q25-q26.  A type of iris hypoplasia (IH)/iridogoniodysgenesis (IGDS) (IRID2; 137600) disorder has been classified separately but is caused by a mutation in PITX2 as well and many cases have the same systemic features.  Mutations in the same gene have also been found in ring dermoid of the cornea (180550) and in some cases of Peters anomaly (604229).

RIEG2 (601499) is rare but a deletion of 13q14 has been reported in several cases.  Mapping in a large family with 11 affected individuals yielded a locus in the same region.  Clinical signs overlap types 1 and 3 with dental, craniofacial, and ocular features, but with hearing impairment and rare umbilical anomalies.

Mutations in the FOXC1 gene (6p25) may be responsible for RIEG3 (602482).  However, a family has been reported with a severe 'Axenfeld-Rieger phenotype' in which a digenic etiology may have been responsible: patients had mutations in both FOXC1 and PITX2

Heterozygous mutations in the PRDM5 gene (4q25-q26) have been identified in 4 members of a Pakistani family with typical features of the Axenfeld-Rieger syndrome. It is labeled type 4 Axenfeld-Rieger syndrome in this database. 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

The presence of glaucoma requires prompt and vigorous treatment but control is difficult with blindness too often the result.  Oral surgery may be beneficial for dental problems.  Low vision aids can be useful.

References
Article Title: 

Axenfeld-Rieger syndrome

Seifi M, Walter MA. Axenfeld-Rieger syndrome. Clin Genet. 2017 Oct 3. doi: 10.1111/cge.13148. [Epub ahead of print] Review.

PubMed ID: 
28972279

The Rieger syndrome

Jorgenson RJ, Levin LS, Cross HE, Yoder F, Kelly TE. The Rieger syndrome. Am J Med Genet. 1978;2(3):307-18.

PubMed ID: 
263445

Pages

Subscribe to RSS - telecanthus