short stature

RAB18 Deficiency

Clinical Characteristics
Ocular Features: 

Microphthalmia with microcornea, lens opacities, small and unresponsive pupils, and optic atrophy are the outstanding ocular features of this syndrome.  The eyes appear deeply set.  Some but not all have ERG evidence of rod and cone dysfunction.  The VEP is usually abnormal.  Short palpebral fissures have been described. 

Systemic Features: 

Patients with the micro syndrome have many somatic and neurologic abnormalities.  Infants usually have feeding problems that is sometimes accompanied by gastroesophageal reflux.  Some degree of psychomotor retardation and developmental delays is common.  Both spasticity and hypotonia have been described.  Some patients have seizures.  Facial hypertrichosis, anteverted ears, and a broad nasal bridge are often noted.   There may be absence of the corpus callosum while diffuse cortical and subcortical atrophy, microgyria, and pachygyria may be evident on MRI imaging.  Hypogenitalism may be a feature in both sexes.  Males may also have cryptorchidism and a micropenis while females can have hypoplasia of the labia minora and clitoris and a small introitus.  Microcephaly is inconsistently present. 

Genetics

This is a clinically and genetically heterogeneous disorder caused by homozygous mutations in at least 4 genes: RAB3GAP1 (WARBM1), RAB3GAP2 (WARBM2), RAB18 (WARBM3), and TBC1D20 (WARBM4).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No effective treatment is available.  Vision remains subnormal even after cataracts are removed.  Nutrition may be improved with placement of a gastrostomy tube.

References
Article Title: 

New RAB3GAP1 mutations in patients with Warburg Micro Syndrome from different ethnic backgrounds and a possible founder effect in the Danish

Morris-Rosendahl DJ, Segel R, Born AP, Conrad C, Loeys B, Brooks SS, M?oller L,Zeschnigk C, Botti C, Rabinowitz R, Uyanik G, Crocq MA, Kraus U, Degen I, Faes F. New RAB3GAP1 mutations in patients with Warburg Micro Syndrome from different ethnic backgrounds and a possible founder effect in the Danish. Eur J Hum Genet. 2010 Oct;18(10):1100-6.

PubMed ID: 
20512159

GM1 Gangliosidosis

Clinical Characteristics
Ocular Features: 

Based on clinical manifestations, three types have been described: type I or infantile form, type II or late-infantile/juvenile form, and type III or adult/chronic form but all are due to mutations in the same gene.  Only the infantile form has the typical cherry red spot in the macula but is present in only about 50% of infants.  The corneal clouding is due to intracellular accumulations of mucopolysaccharides in corneal epithelium and keratan sulfate in keratocytes.  Retinal ganglion cells also have accumulations of gangliosides.  Decreased acuity, nystagmus, strabismus and retinal hemorrhages have been described. 

Systemic Features: 

Infants with type I disease are usually hypotonic from birth but develop spasticity, psychomotor retardation, and hyperreflexia within 6 months.  Early death from cardiopulmonary disease or infection is common.  Hepatomegaly, coarse facial features, brachydactyly, and cardiomyopathy with valvular dysfunction are common.  Dermal melanocytosis has also been described in infants in a pattern some have called Mongolian spots.  Skeletal dysplasia is a feature and often leads to vertebral deformities and scoliosis.  The ears are often large and low-set, the nasal bridge is depressed, the tongue is enlarged and frontal bossing is often striking.  Hirsutism, coarse skin, short digits, and inguinal hernias are common.

The juvenile form, type II, has a later onset with psychomotor deterioration, seizures and skeletal changes apparent between 7 and 36 months and death in childhood.  Visceral involvement and cherry-red spots are usually not present. 

Type III, or adult form, is manifest later in the first decade or even sometime by the 4th decade.  Symptoms and signs are more localized.  Neurological signs are evident as dystonia or speech and gait difficulties.  Dementia, parkinsonian signs, and extrapyramidal disease are late features.  No hepatosplenomegaly, facial dysmorphism, or cherry red spots are present in most individuals. Lifespan may be normal in this type. 

Genetics

This is an autosomal recessive lysosomal storage disease secondary to a mutations in GLB1 (3p21.33).  It is allelic to Morquio B disease (MPS IVB) (253010).  The mutations in the beta-galactosidase-1 gene result in intracellular accumulation of GM1 ganglioside, keratan sulfate, and oligosaccharides.  The production of the enzyme varies among different mutations likely accounting for the clinical heterogeneity. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

There is no treatment that effectively alters the disease course. 

References
Article Title: 

Hurler and Scheie Syndromes (MPS IH, IS, IH/S)

Clinical Characteristics
Ocular Features: 

Progressive corneal clouding is a major feature and appears early in life.  Intracellular accumulations of heparan and dermatan sulfate are responsible for the ground glass appearance.  However, congenital glaucoma also occurs in MPS I and must be considered as a concomitant cause of a diffusely cloudy cornea.

Abnormal storage of mucopolysaccharides has been found in all ocular tissues and in the retina leads to a pigmentary retinopathy.  The ERG may be abolished by 5 or 6 years of age.  Papilledema is often followed by optic atrophy.  Photophobia is a common symptom.  Shallow orbits give the eyes a prominent appearance.

Systemic Features: 

This group of lysosomal deficiency diseases is probably the most common.  MPS I is clinically heterogeneous encompassing three clinical entities: Hurler, Hurler-Scheie, and Scheie.  In terms of clinical severity, Hurler is the most severe and Scheie is the mildest.  Infants generally appear normal at birth and develop the typical coarse facial features in the first few months of life.  Physical growth often stops at about 2 years of age.  Skeletal changes of dysostosis multiplex are often seen and kyphoscoliosis is common as vertebrae become flattened.  The head is large with frontal bossing and a depressed nasal bridge.  Cranial sutures, especially the metopic and sagittal sutures, often close prematurely.  The lips are prominent and an open mouth with an enlarged tongue is characteristic.  The neck is often short.  Odontoid hypoplasia increases the risk of vertebral subluxation and cord compression.  Joints are often stiff and arthropathy eventually affects all joints.  Claw deformities of the hands and carpal tunnel syndrome are common.  Most patients are short in stature and barrel-chested.

Cardiac valves often are thickened and endocardial fibroelastosis is frequently seen.  The coronary arteries are often narrowed.  Respiratory obstructions are common and respiratory infections can be serious problems.  Hearing loss is common.

Most patients reach a maximum functional age of 2 to 4 years and then regress.  Language is limited.  Untreated, many patients die before 10 years of age.

Genetics

The Hurler/Scheie phenotypes are all the result of mutations in the IDUA gene (4p16.3).  They are inherited in an autosomal recessive pattern.  A deficiency in alpha-L-iduronidase causes three phenotypes: Hurler (607014; MPS IH), Hurler-Scheie (607015; MPS IH/S), and Scheie (607016; MPS IS) syndromes.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Various treatments have had some success.  Enzyme replacement using laronidase (Aldurazyme©) has been shown to reduce organomegaly and improve motor and respiratory functions.  It has been used alone and in combination with bone marrow transplantation but therapeutic effects are greater if given to younger patients.  It does not improve skeletal defects or corneal clouding.  MRI imaging has documented improvement in CNS signs.  Gene therapy has shown promise but remains experimental.  Regular lifelong monitoring is important using a multidisciplinary approach to identify potential problems.  Joint problems may be surgically correctable with special emphasis on the need for atlanto-occipital stabilization.  Corneal transplants may be helpful in the restoration of vision in selected patients.

References
Article Title: 

Osteogenesis Imperfecta

Clinical Characteristics
Ocular Features: 

Blue sclerae, especially at infancy, is the most visible ocular sign in osteogenesis imperfecta but it is not always present.  It is also often present in normal infants.  In some patients, it is present early but disappears later in life. Some patients have significantly lower ocular rigidity, corneal diameters, and decreased globe length.  Interestingly, the intensity of the blue color in the sclerae does not seem to be correlated with scleral rigidity.

Systemic Features: 

A defect in type I collagen leading to brittle bones and frequent fractures is the systemic hallmark of this group of disorders.  Clinical and genetic heterogeneity is evident. The nosology is as yet not fully established and will likely require more molecular information.  Type I is considered the mildest of the several forms that have been reported.  Relatively minor trauma during childhood and adolescence can lead to fractures while adults have less risk.  Fractures generally heal rapidly without deformities  and with good callous formation in patients with milder disease.  However, those with more serious disease often end up with deformities and bowed bones.

Short stature, hearing loss, easy bruising, and dentinogenesis imperfecta are often seen as well.

Type II is more severe and fractures often occur in utero.  Fractures may involve long bones, skull bones and vertebrae.  At birth the rib case appears abnormally small and the underdeveloped pulmonary system may lead to severe respiratory problems and even death in some newborns.

Genetics

A number of conditions are associated with fragile bones and the classification of these in the early literature is confusing.  More confusion arises from classification schemes based solely on clinical degrees of severity.   

The designation ‘osteogenesis imperfecta’ is most accurately applied to disorders caused by construction defects in type I collagen fibers which are responsible in 90% of affected individuals.  The defect may occur in either the pro-alpha 1 or pro-alpha 2 chains which together form type I collagen.  The responsible genes are COL1A1 (17q21.31) and COL1A2 (7q22.1).  Clinical types I (166200), IIA (166210), III (259420), and IV (166220) map to these two loci.  The inheritance pattern is autosomal dominant.

Mutations in the CRTAP gene (610854; 3p22) cause an autosomal recessive OI-like phenotype classified as type VII while type VIII is an autosomal recessive OI-like disorder secondary to mutations in LEPRE1 (610915; 1p34).  However, these disorders, while clinically sharing some features of true OI, are better designated as separate conditions based on their unique molecular etiologies.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Avoidance of trauma is paramount.   Periodic intravenous administration of pamidronate can increase bone density and reduce the risk of fractures. Oral bisphosphonates do not seem to be beneficial.  Prompt reduction of fractures is important to the prevention of deformities. A multidisciplinary team is important for the treatment and rehabilitation of patients.

References
Article Title: 

Neurofibromatosis Type I

Clinical Characteristics
Ocular Features: 

Melanocytic iris hamartomas, sometimes called Lisch nodules, are considered pathognomonic of this disease but are found in only about 75% of patients.  These appear as sharply defined, smooth masses on the stromal surface and consist of spindle cells of melanocytic origin.  Their presence correlates with the severity of skin freckles and cafe-au-lait spots.  Also characteristic of neurofibromatosis 1 are eyelid fibromas causing ptosis and the familiar horizontal S-sign in the upper lid margin but these are only found in one-third of patients.  Ciliary body cysts have been reported to occur at a frequency of 78%, or 10 times more frequently than in unaffected individuals.  Nearly half of patients have occludable anterior chamber angles (Types 1 and 2).

Gliomas of the optic nerves, chiasm or optic tracts are slow growing astrocytomas that occur in about 15% of children at a mean age of about 5 years.  While these comprise the most common intracranial tumors in NF1, they typically have a benign course and may even regress.  However, some present as precocious puberty and severe loss of acuity may occur before discovery.

Vascular lesions of the retina are also sometimes seen and may be responsible for rubeosis and neovascular glaucoma.

Systemic Features: 

Vascular anomalies are often seen and those that impact blood supply to the kidneys can induce severe hypertension especially in children (pheochromocytomas are also a risk).  Coarctations and aneurysmal anomalies can obstruct the blood supply to major organs, sometimes acutely.  Some degree of cognitive impairment and sometimes mental retardation can be seen in nearly half of patients, even in the absence of other obvious neurological deficits.  Short stature, tibial pseudoarthrosis, sphenoid dysplasia, and scoliosis are common.  Osteopenia and frank osteoporosis are seen in approximately half of patients.  A small percentage of patients develop malignant peripheral nerve sheath tumors (lifetime risk 8-13%).  Rare patients develop other malignancies, primarily sarcomas.

Diagnosis is based on the presence of some combination of typical features such as cafe-au-lait spots, Lisch nodules, neurofibromas, optic pathway gliomas, axillary or groin freckling, and bone dysplasia.  The underlying disease is progressive and the accuracy of diagnosis improves in older patients.

Genetics

The typical disease is caused by mutations in the NF1 gene (17q11.2) and inherited as an autosomal dominant disorder.  However, about half of patients have new mutations with males having the higher mutation rate.  Penetrance is nearly 100% among those who have mutations in NF1. There is evidence that the gene product is a tumor suppressor protein (neurofibromin) and the clinical features can also result from deactivation of both copies of the gene via the two hit mechanism of Knudson.  This has been proposed as a mechanism to explain the high degree of variability of clinical disease within families as the expression depends upon which cell lines experience postzygotic somatic mutations.

Watson syndrome (193520) is also the result of NF1 mutations and shares some clinical features such as neurofibromas, Lisch nodules, shortness of stature, cognitive deficits, and cafe-au-lait spots.  It may be an allelic disorder.

Neurofibromatosis type II (101000), with less cognitive problems, results from mutations in NF2.  Lisch nodules are less common in type II but acoustic neuromas are more common than in type I.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

There is no treatment for the underlying disease but lifelong monitoring is necessary because of the widespread manifestations and serious threat of complications such as visual impairment, renal hypertension and ischemia of major organs.

References
Article Title: 

Maroteaux-Lamy Syndrome (MPS VI)

Clinical Characteristics
Ocular Features: 

Corneal clouding is the cardinal ocular feature and is often visible by 5 years of age.  Several adult patients have had glaucoma with both open and closed angles.  The mechanism is unknown.  Optic nerve compression or secondary edema can cause a relatively sudden loss of vision.

Systemic Features: 

The lysosomal accumulation of glycosaminoglycans is responsible for the widespread signs and symptoms found in this disease.  Bone destruction in shoulders, hips and skull is often seen by the second decade of life and may become evident later in the knees and spine.  Early growth may be normal but eventually slows resulting in short stature.  Dysplasia of bones comprising these joints leads to stiffness and restricted movement.  The face is dysmorphic with coarse features.  Bone dysplasia and facial dysmorphism may be seen at birth.  Myelopathy and even tetraplegia can result from vertebral compression.  Intelligence is often normal although more severely affected individuals may have some cognitive defects.  Hepatosplenomegaly is common and compromised respiratory function can result in reduced physical stamina.  The tongue is usually enlarged.  Accumulation of dermatan sulfate in heart valves may produce insufficiency or restriction of outflow.

Genetics

MPS VI is a lysosomal storage disease inherited in an autosomal recessive pattern.  The responsible mutations lie in ARSB (5q11-q13), the gene that encodes the enzyme arylsulfatase B.  The phenotype results from defective dermatan sulfate breakdown with lysosomal accumulation.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Enzyme replacement therapy with galsulfase (Naglazyme®) is beneficial in alleviating some of the manifestations of this disease.  Orthopedic surgery for specific deformities may be necessary.  Visually significant corneal opacification may require corneal transplantation.

References
Article Title: 

Threshold effect of urinary glycosaminoglycans and the walk test as indicators of disease progression in a survey of subjects with Mucopolysaccharidosis VI (Maroteaux-Lamy syndrome)

Swiedler SJ, Beck M, Bajbouj M, Giugliani R, Schwartz I, Harmatz P, Wraith JE, Roberts J, Ketteridge D, Hopwood JJ, Guffon N, S?deg Miranda MC, Teles EL, Berger KI, Piscia-Nichols C. Threshold effect of urinary glycosaminoglycans and the walk test as indicators of disease progression in a survey of subjects with Mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). Am J Med Genet A. 2005 Apr 15;134A(2):144-50.

PubMed ID: 
15690405

Noonan Syndrome

Clinical Characteristics
Ocular Features: 

Noonan syndrome has prominent anomalies of the periocular structures including downward-slanting lid fissures, hypertelorism, epicanthal folds, high upper eyelid crease, and some limitation of ocular mobility most commonly of the levator.  Ptosis and strabismus are present in nearly half of patients. Amblyopia has been found in one-third of patients and almost 10% have nystagmus.  Corneal nerves are prominent and a substantial number of individuals have optic nerve abnormalities including drusen, hypoplasia, colobomas and myelinated nerves.  Evidence of an anterior stromal dystrophy, cataracts, or panuveitis is seen in a minority of patients.  About 95% of patients have some ocular abnormalities.

Systemic Features: 

Patients are short in stature.  Birth weight and length may be normal but lymphedema is often present in newborns.  The neck is usually webbed (pterygium colli) and the ears low-set.  The sternum may be deformed.  Cardiac anomalies such as coarctation of the aorta, pulmonary valve stenosis, hypertrophic cardiomyopathy, and septal defects are present in more than half of patients.  Dysplasia of the pulmonic valve has been reported as well.  Thrombocytopenia and abnormal platelet function with abnormalities of coagulation factors are found in about 50% of cases resulting in easy bruising and prolonged bleeding.  Cryptorchidism is common in males.  Some patients have intellectual disabilities with speech and language problems.  Most have normal intelligence.   

Parents of affected children often have subtle signs of Noonan Syndrome.

Genetics

This is an autosomal dominant disorder that can result from mutations in at least 8 genes.  Nearly half are caused by mutations in the PTPN11 gene (12q24.1) (163950).  Mutations in the SOS1 gene (2p22-p21) cause NS4 (610733) and account for 10-20% of cases, those in the RAF1 gene (3p25) causing NS5 (611553) for about the same proportion, and mutations in the KRAS gene (12p12.1) (NS3; 609942) cause about 1%.  Mutations in BRAF (7q34) causing NS7 (613706), NRAS (1p13.2) responsible for NS6 (613224), and MEK1 genes have also been implicated and it is likely that more mutations will be found.  The phenotype is similar in all individuals but with some variation in the frequency and severity of specific features.  New mutations are common. 

Several families with autosomal recessive inheritance (NS2) (605275) patterns have been reported with biallelic mutations in LZTR1.

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

There is no treatment for most of the developmental problems but some patients benefit from special education. Cardiac surgery may be required in some cases to correct the developmental defects.  Bleeding problems can be treated with supplementation of the defective coagulation factor.  Growth hormone therapy can increase the growth velocity.

References
Article Title: 

Autosomal recessive Noonan syndrome associated with biallelic LZTR1 variants

Johnston JJ, van der Smagt JJ, Rosenfeld JA, Pagnamenta AT, Alswaid A, Baker EH, Blair E, Borck G, Brinkmann J, Craigen W, Dung VC, Emrick L, Everman DB, van Gassen KL, Gulsuner S, Harr MH, Jain M, Kuechler A, Leppig KA, McDonald-McGinn DM, Can NTB, Peleg A, Roeder ER, Rogers RC, Sagi-Dain L, Sapp JC, Schaffer AA, Schanze D, Stewart H, Taylor JC, Verbeek NE, Walkiewicz MA, Zackai EH, Zweier C; Members of the Undiagnosed Diseases Network, Zenker M, Lee B, Biesecker LG. Autosomal recessive Noonan syndrome associated with biallelic LZTR1 variants. Genet Med. 2018 Oct;20(10):1175-1185.

PubMed ID: 
29469822

Update on turner and noonan syndromes

Chacko E, Graber E, Regelmann MO, Wallach E, Costin G, Rapaport R. Update on turner and noonan syndromes. Endocrinol Metab Clin North Am. 2012 Dec;41(4):713-34. Epub 2012 Sep 28.

PubMed ID: 
23099266

Morquio Syndrome (MPS IVB)

Clinical Characteristics
Ocular Features: 

Corneal clouding may not be seen until 10 years of age and is sometimes associated with photophobia.  The stroma has fine dust-like particles most dense centrally.  Penetrating keratoplasty is rarely indicated. There is little retinal degeneration unlike that often seen in other mucopolysaccharidoses but the corneal clouding often precludes detailed examination.

Systemic Features: 

This form of mucopolysaccharidosis is characterized by the urinary excretion of keratin sulfate.  Age of onset is highly variable but most children are diagnosed by 6 years of age.  It is a milder disease than the somewhat similar but genetically distinct Morquio type A (253000)  disorder.  Intelligence is normal and there is no central nervous system involvement.  Hip joints are dysplastic and frequently painful.  Vertebral malformations lead to kyphoscoliosis and short trunk dwarfism.  Odontoid hypoplasia can cause cervical instability and increases the risk of myelopathy with secondary bowel and bladder dysfunction.  Coxa valgum, and narrow phalanges are common.  Many individuals have a characteristic gait secondary to genu valgum.  Patients with MPS IVB initially do not have the coarse facies seen in some other forms of MPS.  Further accumulation of cellular keratin sulfate may lead to some coarsening of facial features, increased corneal clouding, and hepatomegaly.  Some form of hearing loss is common.

Genetics

This is an autosomal recessive lysosomal storage disease caused by a mutation in the GLB1 gene (3p21.33) encoding beta-galactosidase.  It is allelic to GM1 gangliosidosis (230500).  Type A Morquio syndrome (253000) is a separate disorder secondary to a mutation in a different gene.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

A variety of treatments are under investigation including enzyme replacement, gene therapy, and bone marrow transplantation.  Supportive and palliative measures for respiratory difficulties and skeletal deformities can be used.  Atlantoaxial subluxation is a constant risk and some physicians recommend prophylactic vertebral fusion.  Intubation for general anesthesia carries special risks.

References
Article Title: 

Mucopolysaccharidoses and the eye

Ashworth JL, Biswas S, Wraith E, Lloyd IC. Mucopolysaccharidoses and the eye. Surv Ophthalmol. 2006 Jan-Feb;51(1):1-17. Review.

PubMed ID: 
16414358

Mutation analyses in 17 patients with deficiency in acid beta-galactosidase: three novel point mutations and high correlation of mutation W273L with Morquio disease type B

Paschke E, Milos I, Kreimer-Erlacher H, Hoefler G, Beck M, Hoeltzenbein M, Kleijer W, Levade T, Michelakakis H, Radeva B. Mutation analyses in 17 patients with deficiency in acid beta-galactosidase: three novel point mutations and high correlation of mutation W273L with Morquio disease type B. Hum Genet. 2001 Aug;109(2):159-66.

PubMed ID: 
11511921

Morquio Syndrome (MPS IVA)

Clinical Characteristics
Ocular Features: 

Corneal clouding in the form of fine deposits in the stroma is the major ocular manifestation but it may not be noted for several years after birth.  Penetrating keratoplasty is rarely needed.  Glaucoma occurs rarely.

Systemic Features: 

There is wide variation in the clinical disease in this disorder and some have grouped cases into severe, intermediate and mild categories.   Onset is about 2 years of age and three-quarters of patients are diagnosed by the age of 6 years.  Intelligence is usually normal and the central nervous system is spared similar to MPS IVB. However, the skeletal dysplasia can lead to neurologic complications.  In particular, odontoid hypoplasia raises the risk of atlantoaxial dislocation and spinal cord damage. The maxillary teeth are often abnormal with wide spacing and a flared appearance.  Truncal dwarfism is characteristic but the facies are often more fine-featured than in other mucopolysaccharidoses.  Lifespan is shortened in most patients.

Genetics

This is an autosomal recessive disorder resulting from mutations in the GALNS gene (16q24.3) encoding galactosamine-6-sulfate sulfatase.  Keratan sulfate and chondroitin-5-sulfate accumulates in lysosomes.  Urinary keratin sulfate excretion is increased.

A clinically similar disease, Morquio syndrome B (253010), is caused by a different mutation.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No specific treatment is available for this disease.  Some have recommended cervical spine fusion to stabilize the atlantoaxial joint. Orthopedic surgery may be indicated for joint and spine deformities.  Special precautions should be taken during intubation for general anesthesia.

Enzyme replacement therapies and hematopoietic stem cell transplantation techniques now being developed hold promise for more specific treatment for the underlying enzyme deficiencies in mucopolysaccharidoses.

References
Article Title: 

Mucopolysaccharidoses and the eye

Ashworth JL, Biswas S, Wraith E, Lloyd IC. Mucopolysaccharidoses and the eye. Surv Ophthalmol. 2006 Jan-Feb;51(1):1-17. Review.

PubMed ID: 
16414358

Lowe Oculocerebrorenal Syndrome

Clinical Characteristics
Ocular Features: 

Lens development is abnormal from the beginning secondary to abnormal migration of lens epithelium which has been described in fetuses by 20-24 weeks of gestation.  This leads to some degree of opacification in 100% of affected males.  The lens opacities may be polar or nuclear in location but complete opacification also occurs.   Leukocoria, miosis, microphthalmos and a shallow anterior chamber has been noted in neonates.  The cataractous lenses may be small and abnormally formed.  Glaucoma is present in more than half of affected males with onset by the age of 6 years and may be difficult to control.  Conjunctival and corneal keloids are found in about one-fourth of patients.

Adult female carriers characteristically have peripheral cortical opacities, appearing in a radial configuration.  These 'snowflake' opacities seldom cause visual symptoms.   It has been proposed that slit lamp examinations for such opacities can accurately determine the carrier status of females.

Systemic Features: 

Mental retardation, hypotonia, short stature, and developmental delays are common.  Seizures and behavior problems are seen in older children.  The renal defect secondary to defective phosphatidylinositol 4, 5-biphosphate 5- phosphatase results in a Fanconi-type aminoaciduria beginning late in the first year of life.  The phosphaturia leads to hypophosphatemia and eventually renal rickets.  Proteinuria, polyuria, as well as bicarbonate, sodium and potassium wasting with tubular acidosis are all part of the urinary profile.  Some patients have dental cysts and/or defective dentin.

Genetics

The mutation causing this X-linked disorder is in the OCRL gene located at Xq26.1.  New mutations have been found among nearly one-third of affected males.  

Another X-linked disorder with similar but less severe kidney disease, Dent disease 2 (300555), has been found to have mutations in the same gene.  However, none of the ocular features are present.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Cataracts need to be removed before sensory nystagmus and amblyopia develop.  Fluid and electrolyte balance must be maintained.  Growth hormone can be used in selected patients.  Supportive systemic care is necessary in most cases.  Lifelong kidney and ocular monitoring is recommended.

References
Article Title: 

Pages

Subscribe to RSS - short stature