hypospadias

Elsahy-Waters Syndrome

Clinical Characteristics
Ocular Features: 

Structural anomalies of periocular tissues are common.  Hypertelorism, proptosis, and telecanthus may be striking.  Colobomas or clefts of the upper lid are frequently seen.  The eyebrows are bushy and synophyrs may be present across a broad nasal bridge.  Megalocornea, downslanting lid fissures, glaucoma and cataracts have also been reported but are uncommon.

Systemic Features: 

The skull has been described as brachycephalic.  The midface is flat due to maxillary hypoplasia. The lower jaw is prominent and some patients have mandibular prognathism.  A bifid uvula or partial clefting of the palate are common.  Low-set and posteriorly rotated ears have been reported as well.

 Both pectus excavatum and pectus carinatum have been described.  The teeth have dysplastic enamel and often have obliterated pulp chambers and dental cysts.  Their roots may be shortened and deformed and they are often lost early.  Vertebrae may have fusion of the spines, particularly in the cervical area.  A mixed type of hearing loss is common and some degree of intellectual disability is often evident, especially in older individuals.  Most males have some degree of hypospadias.  Cryptorchidism has been reported in one individual.

Brain imaging in one case revealed no abnormalities.

Genetics

This disorder results from biallelic mutations in the CDH11 gene (16q21).  The parents have been consanguineous in most reports and no vertical transmission has been documented making autosomal recessive the most likely pattern of inheritance.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment for the general disorder has been reported.  Eyelid and palatal defects may be surgically repaired and assistive hearing devices may be of benefit.  Special education is also likely to be helpful.

References
Article Title: 

Progeroid Short Stature with Pigmented Nevi

Clinical Characteristics
Ocular Features: 

The presence of cataract has been reported.   One patient with keratoconus, endothelial dystrophy, and chronic conjunctivitis required a corneal transplant for a perforated ulcer.  Another individual with endothelial dystrophy, keratoconus, dry eye syndrome, and conjunctivitis developed OCT evidence of progressive retinal thickening and folding of inner retinal layers.  Retinal electrodiagnostic tests were normal.   Few patients have had complete ocular examinations, however.

Systemic Features: 

Short stature beginning in utero is characteristic and general growth parameters are usually in the third percentile.  The appearance of premature aging is suggested by a pinched bird-like facies and lack of facial subcutaneous fat.  Striking cutaneous pigmented nevi are present and may increase in number throughout life.  Joint mobility is limited to about half of normal.  The voice is often characteristically high-pitched.  Hypodontia and irregular dentition are often seen.

There may be an immunodeficiency as reflected by susceptibility to recurrent infections due to subnormal numbers of B and T cells.  Cognitive abilities are subnormal and some decline in adulthood has been reported.  Some individuals have been considered mentally retarded.  Agitation, touch hypersensitivity, depression, panic attacks, and severe insomnia may be present.  Sensorineural hearing loss is common.  Males may have hypospadias while females experience premature puberty and premature menopause.

Genetics

Consanguinity among some parents suggests autosomal recessive inheritance but no locus or mutation have been identified.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatnent has been reported.

References
Article Title: 

Immunodeficiency-Centromeric Instability-Facial Anomalies Syndrome 3

Clinical Characteristics
Ocular Features: 

Patients have been described as having variable oculofacial features including epicanthal folds, hypertelorism, strabismus, and 'tapetoretinal degeneration'.    

Systemic Features: 

The full phenotype is variable and unknown based on the 5 reported patients from 4 families of whom 3 were consanguineous.  Recurrent infections (especially respiratory and otitis media) seem to be among the most consistent features.  Others include intrauterine growth retardation, developmental delay including psychomotor delays, a flat midface with various anomalies, low-set ears, renal dysgenesis, polydactyly, severe agammaglobulinemia, hypospadias, and cryptorchidism.  Normal T-cell function and normal B cells are present.  Conductive hearing loss, polydactyly, and scoliosis may be features as well.  Two of the 5 reported patients with ICF3 were reported to have mental retardation.  One patient died at the age of 26 years.

Genetics

Homozygosity of CDCA7 (2q31.1) mutations with centromeric instability and hypomethylation of selected juxtacentromeric heterochromatin regions is responsible for this (ICF3) autosomal recessive condition.  There is genetic heterogeneity in ICF (ICF1, ICF2, ICF3, and ICF4 [see 242860).   

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No effective treatment has been reported.

References
Article Title: 

Mutations in CDCA7 and HELLS cause immunodeficiency-centromeric instability-facial anomalies syndrome

Thijssen PE, Ito Y, Grillo G, Wang J, Velasco G, Nitta H, Unoki M, Yoshihara M, Suyama M, Sun Y, Lemmers RJ, de Greef JC, Gennery A, Picco P, Kloeckener-Gruissem B, Gungor T, Reisli I, Picard C, Kebaili K, Roquelaure B, Iwai T, Kondo I, Kubota T, van Ostaijen-Ten Dam MM, van Tol MJ, Weemaes C, Francastel C, van der Maarel SM, Sasaki H. Mutations in CDCA7 and HELLS cause immunodeficiency-centromeric instability-facial anomalies syndrome. Nat Commun. 2015 Jul 28;6:7870.

PubMed ID: 
26216346

Vici Syndrome

Clinical Characteristics
Ocular Features: 

Congenital cataracts, both unilateral and bilateral are common.  The fundus appears hypopigmented. Nystagmus, optic neuropathy, and mild ptosis have been reported.  Nothing is known regarding acuity. 

Systemic Features: 

Infants at birth have striking hypotonia with a weak cry and feeding difficulties.  Dysmorphic features such as micrognathia, microcephaly, low-set ears, some degree of generalized hypopigmentation (hair and skin), and a broad nose with a long philtrum may be present. The face may appear triangular.  Cleft lip and palate may be present.  Evidence of cardiac dysfunction may also be present early with both dilated and hypertrophic cardiomyopathy reported.  Hearing loss has been reported in some individuals.  Recurrent infections are common and immunologic studies have revealed, in some patients, granulocytopenia, low T cell counts (primarily T4+ cells), thymic dysplasia, and low levels of IgG.  Seizures may occur.  Liver dysfunction has been variably reported.

Neurological and brain evaluations have reported agenesis of the corpus callosum, defects in the septum pellucidum, and hypoplasia of the cerebellar vermis along with pontocerebellar hypoplasia.  Psychomotor retardation is severe in most individuals along with general growth retardation.

Histologic studies of skeletal muscle fibers have shown considerable variation in fiber size, centralized nuclei, fucsinophilic inclusions, and enlarged abnormal mitochondria.  Other central nervous system abnormalities include in some individuals a paucity of white matter, schizencephaly, neuronal heterotopias, and enlargement of the ventricles.

The cumulative effects of these multiorgan abnormalities lead to death within the first year or two of life, generally of heart failure or sepsis. 

Genetics

Homozygous or compound heterozygous mutations in the EPG5 gene (18q12.3) have been associated with this condition.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Vici syndrome: a

Byrne S, Dionisi-Vici C, Smith L, Gautel M, Jungbluth H. Vici syndrome: a
review
. Orphanet J Rare Dis. 2016 Feb 29;11(1):

PubMed ID: 
4772338

Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy

Cullup T, Kho AL, Dionisi-Vici C, Brandmeier B, Smith F, Urry Z, Simpson MA, Yau S, Bertini E, McClelland V, Al-Owain M, Koelker S, Koerner C, Hoffmann GF, Wijburg FA, ten Hoedt AE, Rogers RC, Manchester D, Miyata R, Hayashi M, Said E, Soler D, Kroisel PM, Windpassinger C, Filloux FM, Al-Kaabi S, Hertecant J, Del Campo M, Buk S, Bodi I, Goebel HH, Sewry CA, Abbs S, Mohammed S, Josifova D, Gautel M, Jungbluth H. Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy. Nat Genet. 2013 Jan;45(1):83-7.

PubMed ID: 
23222957

Basel-Vanagaite-Smirin-Yosef Syndrome

Clinical Characteristics
Ocular Features: 

The eyes appear abnormally far apart.  Ptosis, microcornea, congenital cataracts, sparse eyebrows, and strabismus are usually present.  Epicanthal folds are often seen.

Systemic Features: 

Psychomotor development is severely delayed and with delay or absence of milestones.  DTRs are often hyperactive but some infants are described as hypotonic.  Some individuals have seizures.  There may be a nevus flammeus simplex lesion on the forehead and body hair is sparse.  Cleft palate, cardiac septal defects, hypospadius, thin corpus callosum and cerebral ventricular dilation have been observed.  The upper lip may have a tented morphology with everted lower lip vermilion. A short philtrum is common. 

Genetics

A homozygous missense mutation in the MED25 gene (19q13.33) has been reported and the transmission pattern is consistent with autosomal recessive inheritance.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No known treatment has been reported.

References
Article Title: 

Homozygous MED25 mutation implicated in eye-intellectual disability syndrome

Basel-Vanagaite L, Smirin-Yosef P, Essakow JL, Tzur S, Lagovsky I, Maya I, Pasmanik-Chor M, Yeheskel A, Konen O, Orenstein N, Weisz Hubshman M, Drasinover V, Magal N, Peretz Amit G, Zalzstein Y, Zeharia A, Shohat M, Straussberg R, Monte D, Salmon-Divon M, Behar DM. Homozygous MED25 mutation implicated in eye-intellectual disability syndrome. Hum Genet. 2015 Jun;134(6):577-87.

PubMed ID: 
25792360

Mowat-Wilson Syndrome

Clinical Characteristics
Ocular Features: 

Most reports of Mowat-Wilson disorders provide only incomplete ocular findings and the full phenotype remains to be described.  Most of the reported findings are part of the facial phenotype, such as downward slanting palpebral fissures, and 'wedge-shaped' eyebrows with the medial portion visibly wider than the temporal region.  Hypertelorism, strabismus and telecanthus have also been noted.  However, optic nerve atrophyor aplasia, RPE atrophy, microphthalmia, ptosis, and cataracts are sometimes present while strabismus is more common.  Iris and other uveal colobomas may be present and at least one patient has been reported with retinal aplasia.  There may be considerable asymmetry in the features among the two eyes.

Systemic Features: 

This is a highly complex dysmorphic developmental disorder with unusual progression of facial features.  Birth weight and length are usually normal but later there is general somatic and mental growth delay with microcephaly (pre- and post natal), short stature, intellectual disability, and epilepsy (70%).  Hypotonia has been noted at birth.  A significant proportion (~50%) of patients have Hirschsprung disease with megacolon.  Congenital heart defects are common, many involving septal openings.  Hypospadias is often present with or without other genitourinary anomalies.  Teeth are often crowded and crooked.  The earlobes may be flattened and may have a central depression.

The facial features are present in early childhood but as they mature the upper half of the nasal profile becomes convex, while the nasal tip becomes longer and overhangs the philtrum.  The eyes appear more deeply set.  The chin lengthens and prognathism becomes apparent.  IQ levels cannot be determined but many individuals exhibit behavioral or emotional disturbances.

Genetics

Heterozygous mutations in ZEB2 (2q22.3) are responsible for most cases (81%) of this disorder.  A large number of molecular mutations, many of the nonsense type, have been reported. About 2-4% of patients have cytogenetic alterations involving the 2q22 region.

Another disorder with microcephaly, intellectual disability and Hirschsprung disease is Goldberg-Shprintzen syndrome (609460) with mutations in the KIAA1279 gene.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Treatment may be directed at specific defects but there is no treatment for the general disorder. Individuals can live to adulthood. Treatment is largely symptomatic.  Physical and speech treatment can be helpful if initiated early.

References
Article Title: 

Phenotype and genotype of 87 patients with Mowat-Wilson syndrome and

Ivanovski I, Djuric O, Caraffi SG, Santodirocco D, Pollazzon M, Rosato S,
Cordelli DM, Abdalla E, Accorsi P, Adam MP, Ajmone PF, Badura-Stronka M, Baldo C,
Baldi M, Bayat A, Bigoni S, Bonvicini F, Breckpot J, Callewaert B, Cocchi G,
Cuturilo G, De Brasi D, Devriendt K, Dinulos MB, Hjortshoj TD, Epifanio R,
Faravelli F, Fiumara A, Formisano D, Giordano L, Grasso M, Gronborg S, Iodice A,
Iughetti L, Kuburovic V, Kutkowska-Kazmierczak A, Lacombe D, Lo Rizzo C, Luchetti
A, Malbora B, Mammi I, Mari F, Montorsi G, Moutton S, Moller RS, Muschke P,
Nielsen JEK, Obersztyn E, Pantaleoni C, Pellicciari A, Pisanti MA, Prpic I,
Poch-Olive ML, Raviglione F, Renieri A, Ricci E, Rivieri F, Santen GW, Savasta S,
Scarano G, Schanze I, Selicorni A, Silengo M, Smigiel R, Spaccini L, Sorge G,
Szczaluba K, Tarani L, Tone LG, Toutain A, Trimouille A, Valera ET, Vergano SS,
Zanotta N, Zenker M, Conidi A, Zollino M, Rauch A, Zweier C, Garavelli L.
Phenotype and genotype of 87 patients with Mowat-Wilson syndrome and
recommendations for care
. Genet Med. 2018 Jan 4. doi: 10.1038/gim.2017.221. [Epub
ahead of print].

PubMed ID: 
29300384

Clinical spectrum of eye malformations in four patients with Mowat-Wilson syndrome

Bourchany A, Giurgea I, Thevenon J, Goldenberg A, Morin G, Bremond-Gignac D, Paillot C, Lafontaine PO, Thouvenin D, Massy J, Duncombe A, Thauvin-Robinet C, Masurel-Paulet A, Chehadeh SE, Huet F, Bron A, Creuzot-Garcher C, Lyonnet S, Faivre L. Clinical spectrum of eye malformations in four patients with Mowat-Wilson syndrome. Am J Med Genet A. 2015 Apr 21. [Epub ahead of print]

PubMed ID: 
25899569

The behavioral phenotype of Mowat-Wilson syndrome

Evans E, Einfeld S, Mowat D, Taffe J, Tonge B, Wilson M. The behavioral phenotype of Mowat-Wilson syndrome. Am J Med Genet A. 2012 Feb;158A(2):358-66. doi: 10.1002/ajmg.a.34405.

PubMed ID: 
22246645

Mowat-Wilson syndrome: facial phenotype changing with age: study of 19 Italian patients and review of the literature

Garavelli L, Zollino M, Mainardi PC, Gurrieri F, Rivieri F, Soli F, Verri R, Albertini E, Favaron E, Zignani M, Orteschi D, Bianchi P, Faravelli F, Forzano F, Seri M, Wischmeijer A, Turchetti D, Pompilii E, Gnoli M, Cocchi G, Mazzanti L, Bergamaschi R, De Brasi D, Sperandeo MP, Mari F, Uliana V, Mostardini R, Cecconi M, Grasso M, Sassi S, Sebastio G, Renieri A, Silengo M, Bernasconi S, Wakamatsu N, Neri G. Mowat-Wilson syndrome: facial phenotype changing with age: study of 19 Italian patients and review of the literature. Am J Med Genet A. 2009 Mar;149A(3):417-26. Review.

PubMed ID: 
19215041

Clinical and mutational spectrum of Mowat-Wilson syndrome

Zweier C, Thiel CT, Dufke A, Crow YJ, Meinecke P, Suri M, Ala-Mello S, Beemer F, Bernasconi S, Bianchi P, Bier A, Devriendt K, Dimitrov B, Firth H, Gallagher RC, Garavelli L, Gillessen-Kaesbach G, Hudgins L, K?SS?SSri?SSinen H, Karstens S, Krantz I, Mannhardt A, Medne L, M?ocke J, Kibaek M, Krogh LN, Peippo M, Rittinger O, Schulz S, Schelley SL, Temple IK, Dennis NR, Van der Knaap MS, Wheeler P, Yerushalmi B, Zenker M, Seidel H, Lachmeijer A, Prescott T, Kraus C, Lowry RB, Rauch A. Clinical and mutational spectrum of Mowat-Wilson syndrome. Eur J Med Genet. 2005 Apr-Jun;48(2):97-111

PubMed ID: 
16053902

Microphthalmia, Syndromic 1

Clinical Characteristics
Ocular Features: 

Microphthalmia is often a part of other ocular and systemic anomalies.  The full range of essential features of Lenz microphthalmia remains unknown but is often diagnosed in males when colobomas and microcornea are associated with mental deficits together with urogenital and skeletal anomalies.  Microphthalmos may be unilateral and ocular cysts are common.  The globes may be sufficiently small that anophthalmia is sometimes diagnosed but this is a misnomer as some ocular tissue is always present.   Sixty per cent of eyes have colobomas which are often bilateral and may involve the optic disc, choroid, ciliary body, and iris.  Blindness is common.  

Systemic Features: 

A large number of associated systemic anomalies have been reported with this type of microphthalmia.  Skeletal features include microcephaly, spinal deformities, high arched palate, pectus excavatum, absent or dysplastic clavicles (accounting for the narrow or sagging shoulders), and digital anomalies including syndactyly, duplicated thumbs and clinodactyly.  Physical growth retardation is evident by shortness of stature.   Urogenital malformations are present in 77% of individuals and include hypospadius, cryptorchidism, hydroureter, and renal dysgenesis.  Dental anomalies include oligodontia and irregular lower incisors that may be widely spaced.  Some degree of intellectual disability is present in 63%.  The ears may be abnormally shaped, low-set, rotated posteriorly, and anteverted. 

Genetics

This is a rare X-linked disorder that is apparently due to an unknown mutation at Xq27-Xq28.  No male-to-male transmission has been observed but affected males rarely reproduce as a result of various urogenital anomalies.

A somewhat similar X-linked syndrome of microphthalmia, sometimes called OFCD syndrome (syndromic 2 microphthalmia; 300166) has been reported to be caused by mutations in BCOR (Xp11.4).  This MCOPS2 disorder is often considered to be X-linked dominant with lethality in males.

Another X-linked non-syndromic form of microphthalmia with colobomas has been reported (Microphthalmia with Coloboma, X-Linked; 300345).  In addition there is a similar disorder of simple Microphthalmia with Coloboma that is inherited either in an autosomal dominant or autosomal recessive pattern (605738, 610092, 611638, 613703, 251505 ).

Pedigree: 
X-linked recessive, carrier mother
X-linked recessive, father affected
Treatment
Treatment Options: 

There is no treatment beyond supportive care for specific health issues. 

References
Article Title: 

Biemond Syndrome II

Clinical Characteristics
Ocular Features: 

This disorder may belong to the spectrum of Bardet-Biedl syndromes (209900) but is listed separately because of the prominent association of iris colobomata.  Retinal dystrophy resembling retinitis pigmentosa is also part of this disorder but the rarity of cases precludes a full description of the phenotype.

Systemic Features: 

Underdevelopment of the external genitalia is more prominent in males.  Obesity, hydrocephalus and mental retardation are also features.  Postaxial polydactyly is common.  Renal disease does not seem to be part of this disorder.

Genetics

Little is known about the inheritance or genetic defect responsible.  Colobomas and polydactyly have been found in relatives of patients with Biemond syndrome suggesting that this may be an autosomal dominant disorder with variable penetrance.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

None known.

References
Article Title: 
Subscribe to RSS - hypospadias