cardiac anomalies

Kabuki Syndrome 2

Clinical Characteristics
Ocular Features: 

The facial features are characteristic primarily because of the appearance of the periocular features.  The eyebrows are highly arched and sparse.  The lid fissures are long with eversion of the lateral portion of the lower eyelid.  The eyelashes are bushy.  Nystagmus and strabismus have been reported.

Systemic Features: 

Only a small number of individuals with Kabuki syndrome 2 have been reported and the phenotype is incompletely described.  Most of the features in type 2 are similar to those in type 1 with defects in multiple organs.  There are often cardiac malformations including septal defects.  Otitis media and hearing loss are common.  The pinnae are large and cupped.  A highly arched or cleft palate may be present and the teeth are usually small.  The joints are highly mobile and general hypotonia is often present. The fifth finger is often short and clinodactylous.  Persistent fetal fingerpads are common.  The amount of intellectual disability varies considerably with some patients functioning normally.  Urogenital anomalies are less common than found in Kabuki syndrome 1 and anal malformations do not seem to be a feature.

Genetics

Kabuki syndrome 2 is an X-linked disorder, usually as the result of a mutation in the KDM6A gene (Xp11.3).   Patients with the X-linked form of Kabuki represent about 5-10% of cases.   

Kabuki syndrome 1 (147920) is an autosomal dominant condition caused by heterozygous mutations in the KMT2D gene but remaining heterogeneity is suggested by the fact that a substantial proportion (30%) of individuals with Kabuki syndrome features has neither of these mutations.

In a 3 generation family two males had the typical Kabuki phenotype whereas their mother and grandmother (all had the KMT2D mutation) had various attenuated features.

Treatment
Treatment Options: 

Management guidelines are available (Management of Kabuki Syndrome).

References
Article Title: 

Molecular analysis, pathogenic mechanisms, and readthrough therapy on a large cohort of Kabuki syndrome patients

Micale L, Augello B, Maffeo C, Selicorni A, Zucchetti F, Fusco C, De Nittis P, Pellico MT, Mandriani B, Fischetto R, Boccone L, Silengo M, Biamino E, Perria C, Sotgiu S, Serra G, Lapi E, Neri M, Ferlini A, Cavaliere ML, Chiurazzi P, Monica MD, Scarano G, Faravelli F, Ferrari P, Mazzanti L, Pilotta A, Patricelli MG, Bedeschi MF, Benedicenti F, Prontera P, Toschi B, Salviati L, Melis D, Di Battista E, Vancini A, Garavelli L, Zelante L, Merla G. Molecular analysis, pathogenic mechanisms, and readthrough therapy on a large cohort of Kabuki syndrome patients. Hum Mutat. 2014 Jul;35(7):841-50.

PubMed ID: 
24633898

Roberts Syndrome

Clinical Characteristics
Ocular Features: 

The eyes often appear prominent as the result of shallow orbits.  Hypertelorism and microphthalmia can be present.  The sclerae can have a bluish hue.   Cataracts and central corneal clouding plus scleralization and vascularization of the peripheral corneas are sometimes seen.  Lid colobomas and down-slanting palpebral fissures may be present.

Systemic Features: 

Failure of both membranous and long bones to grow properly lead to a variety of abnormalities such as craniosynostosis, hypomelia, syndactyly, oligodactyly, malar hypoplasia, short neck, micrognathia, and cleft lip and palate.  The long bones of the limbs may be underdeveloped or even absent.  Contractures of elbow, knee, and ankle joints are common as are digital anomalies.  Low birth weight and slow postnatal growth rates are usually result in short stature.  The hair is often sparse and light-colored. 

Mental development is impaired and some children are diagnosed to have mental retardation.  Cardiac defects are common.  Facial hemangiomas are often present as are septal defects and sometimes a patent ductus arteriosus.  External genitalia in both sexes appear enlarged.  The kidneys may be polycystic or horseshoe-shaped.

Genetics

This is an autosomal recessive condition caused by mutations in the ESCO2 gene (8p21.1).  Mutations in the same gene are also responsible for what some have called the SC phocomelia syndrome (269000) which has a similar but less severe phenotype.  Some consider the two disorders to be variants of the same condition and they are considered to be the same entity in this database.  The gene product is required for structural maintenance of centromeric cohesion during the cell cycle.  Microscopic anomalies of the centromeric region (puffing of the heterochromatic regions) are sometimes seen during cell division.

The Baller-Gerold syndrome (218600) has some phenotypic overlap with Roberts syndrome but is caused by mutations in a different gene (RECQL4).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Severely affected infants may be stillborn or die in infancy.  Other individuals live to adulthood.  There is no treatment for this condition beyond specific correction of individual anomalies.

References
Article Title: 

Microphthalmia, Syndromic 2

Clinical Characteristics
Ocular Features: 

Microphthalmia with congenital cataracts are the outstanding ocular features of this syndrome.  Some patients have glaucoma.  Blepharophimosis, ptosis, and ankyloblepharon have also been reported.

Systemic Features: 

Facial dysmorphism, dental anomalies and cardiac defects are consistently present.  The face may appear elongated while the nose can be short with a broad tip and long philtrum.  The primary teeth often persist into the second decade but oligodontia, hyperdontia, and dental radiculomegaly may be seen as well.  Reported cardiac defects include ASD, VSD and floppy valves.  Some patients have cleft palate.  Renal, and intestinal malformations have also been described and some patients exhibit psychomotor delays.

Genetics

This is an X-linked disorder secondary to a mutation in the BCOR gene at Xp11.4.  Because virtually all patients are female, it has been suggested that this is an X-linked dominant mutation with lethality in hemizygous males (mother-daughter transmission has been reported).  This is one of several disorders [others being Incontinentia pigmenti (308300)and focal dermal hypoplasia (305600)] in which skewed X-chromosome inactivation has been demonstrated.

Pedigree: 
X-linked dominant, father affected
X-linked dominant, mother affected
Treatment
Treatment Options: 

Cataracts can be removed and glaucoma requires treatment.

References
Article Title: 

Rubinstein-Taybi Syndrome 1

Clinical Characteristics
Ocular Features: 

There is considerable clinical heterogeneity in this disorder.  Few patients have all of the clinical features and there is much variation in the severity of these.  Almost all segments of the eye can be involved.  The lashes are often lush and the eyebrows may be highly arched and bushy.  Lid fissures are often downward slanting (88%).  Congenital glaucoma, nystagmus, cataracts, lacrimal duct obstruction (37%), ptosis (29%), colobomas and numerous corneal abnormalities including keratoglobus, sclerocornea, and megalocornea have been reported.  Abnormal VEP waveforms and cone and cone-rod dysfunction have been found in the majority (78%) of patients tested.  Retinal pigmentary changes have been seen in some patients.  Refractive errors (usually myopia) occur in 56% of patients.  Visual acuities vary widely but about 20% of patients are visually handicapped.

Fluorescein angiography in a single patient revealed generalized vascular attenuation and extensive peripheral avascularity.  The AV transit time was prolonged with delayed venous filling and late small vessel leakage. 

Systemic Features: 

The facial features are reported to be characteristic but there are few distinctive signs.  The face is often broad and round, the nose is beaked, the mouth is small, and the lower lip appears to pout and protrudes beyond a short upper lip.  Smiles have been described as 'grimacing'.  It is common for the columella to protrude beyond the alae nasi.  The palate is narrow and highly arched and the laryngeal walls collapse easily which may lead to feeding problems and respiratory difficulties.  The ears may be rotated posteriorly.  The anterior hairline can appear low.

Among the more distinctive signs are the broad thumbs and great toes which are often deviated medially.  However, the distal phalanges of all fingers may be broad as well.  Bone fractures are common and patellar dislocations can be present as seen in the first two decades of life.  Hypotonia is a feature.  Numerous dental anomalies have been reported including crowded teeth, enamel hypoplasia, crossbite, and abnormal numbers of teeth.

Developmental delays are common.  Infancy and childhood milestones are often delayed.  Many patients have cognitive delays and some are mildly retarded.  Postnatal growth is subnormal and obesity is common.  A third of patients have a cardiac abnormality including septal defects, valvular defects, coarctation of the aorta, pulmonic stenosis, and patent ductus arteriosus.  Renal abnormalities occur frequently and almost all males have undescended testes.  Patients are at increased risk of tumors, both malignant and benign, many of which occur in the central nervous system.  Other problems are constipation and hearing loss.

Genetics

Evidence points to an autosomal dominant mode of inheritance secondary to mutations in CREBBP (16p13.3) but there is some genetic heterogeneity as mutations in EP300 (22q13) have been associated with a similar disease (see Rubinstein-Taybi Syndrome 2; 613684).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Treatment is directed at specific clinical features such as glaucoma and strabismus.  Special education and vocational training may be helpful.  Hearing loss may respond to standard treatment.  Fractures and dislocations should receive prompt attention.  Cardiac anomalies may require surgical correction.

References
Article Title: 

Weill-Marchesani Syndrome 1

Clinical Characteristics
Ocular Features: 

The Weill-Marchesani phenotype is a rare connective tissue disorder manifested by short stature, brachydactyly, spherophakia and stiff joints.   As many as 94% have spherophakia and 64% have dislocated lenses.  The central corneal thickness is increased.  The small, abnormally shaped lens can migrate anteriorly causing pupillary block glaucoma and sometimes dislocates into the anterior chamber.  This may occur spontaneously or following pharmacologic mydriasis which is sometimes done to relieve the pupillary block.

Systemic Features: 

Short stature in the range of 155 cm in height for men and 145 cm for women is common.  Brachydactyly and stiff joints prevent patients from making a tight fist.   A few patients (13%) have some mild mental deficit but most have normal intelligence.  Cardiac defects include patent ductus arteriosis, pulmonary stenosis, prolonged QT interval mitral valve stenosis, and mitral valve prolapse.  Some heterozygous carriers also are short in stature and may have joint stiffness.

Genetics

Homozygous mutations in the ADAMTS10 gene (19p13.3-p13.2) cause this disorder.  Homozygous mutations in LTBP2 (14q24.3) have also been found in WMS1 and in the Weill-Marchesani-Like syndrome (613195).

Weill-Marchesani syndrome 2 (608328) is a clinically similar syndrome but results from heterozygous mutations in FBN1. Homozygous mutations in ADAMTS17 cause the Weill-Marchesani-Like syndrome (613195) .  It is not always possible to distinguish between the AR and AD forms of the disease using clinical criteria alone.

 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Dislocated lenses should be removed if they are interfering with vision or migrate into the anterior chamber.  A peripheral iridotomy should be considered in cases where pupillary block glaucoma occurs.  Long-term mydriasis is not recommended because of the risk of lens dislocation into the anterior chamber.  Chronic open angle glaucoma is a threat and life-long monitoring is recommended.  Measurements of the intraocular pressure should take the increased central corneal thickness into account.  Trabeculectomy should be considered when the pressure cannot be medically controlled.

References
Article Title: 

LTBP2 mutations cause Weill-Marchesani and Weill-Marchesani-like syndrome and affect disruptions in the extracellular matrix

Haji-Seyed-Javadi R, Jelodari-Mamaghani S, Paylakhi SH, Yazdani S, Nilforushan N, Fan JB, Klotzle B, Mahmoudi MJ, Ebrahimian MJ, Chelich N, Taghiabadi E, Kamyab K, Boileau C, Paisan-Ruiz C, Ronaghi M, Elahi E. LTBP2 mutations cause Weill-Marchesani and Weill-Marchesani-like syndrome and affect disruptions in the extracellular matrix. Hum Mutat. 2012 Apr 26. doi: 10.1002/humu.22105. [Epub ahead of print] PubMed PMID: 22539340.

PubMed ID: 
22539340

Clinical homogeneity and genetic heterogeneity in Weill-Marchesani syndrome

Faivre L, Dollfus H, Lyonnet S, Alembik Y, M?(c)garban?(c) A, Samples J, Gorlin RJ, Alswaid A, Feingold J, Le Merrer M, Munnich A, Cormier-Daire V. Clinical homogeneity and genetic heterogeneity in Weill-Marchesani syndrome. Am J Med Genet A. 2003 Dec 1;123A(2):204-7. Review.

PubMed ID: 
14598350
Subscribe to RSS - cardiac anomalies