autosomal recessive

Flecked Retina Syndromes

Clinical Characteristics
Ocular Features: 

There exist a considerable number of disorders often classified under the heading of 'flecked retina' syndrome.  Prior to the modern genomic period, distinctions among them were based on the clinical picture, functional abnormalities, and electrophysiological studies.  The nosology is becoming clearer as more individuals are genotyped and we can expect further discrimination of these disorders in the near future.

White or yellow discrete dots are found throughout the fundus.  These are most dense in the midperiphery RPE and the macula is generally not involved.  This is most common in patients with fundus albipunctatus who have a nonprogressive disease.  Stationary night blindness is the predominant symptom.  However, patients with mutations in RDH5 may have more serious cone involvement and progressive macular disease.  Visual acuity varies from near normal to severe loss.  Photopic ERGs may be normal but only low scotopic responses can be recorded in such patients.  Cone dysfunction is more severe in older patients.

Systemic Features: 

No systemic disease is associated with these syndromes.

Genetics

These disorders are sometimes grouped into the category of 'flecked retina disease'.

Autosomal dominant inheritance is typical for fundus albipunctatus (136880) resulting from mutations in the RDS (PRPH2) gene (6p21.1-cen).

Autosomal recessive fundus albipunctatus (136880) is caused by mutations in RDH5 (12q13-q14) and sometimes in RLBP1 (15q26.1).

Retinitis punctata albescens (136880) and fundus albipunctatus (136880) may both be caused by mutations in RLBP1 (15q26.1).  In a consanguineous family in which younger individuals (aged 3-20 years) had signs of fundus albipunctatis, older individuals in the fourth and fifth decades of life had features of retinitis punctata albescens (136880).  Homozygous mutations in RLBP1 were found in all individuals.  Homozygous mutations in the same gene are also responsible for Bothnia type retinal dystrophy (607475) and for the Newfoundland type of retinal dystrophy (607476).

Familial Benign Fleck Retina (228980) is characterized by a normal ERG and normal vision. The macula is spared from the white/yellow flecks located behind retinal vessels. Autofluorescence is present and the fluorescein angiogram shows irregular hypofluorescence.  Nothing is known about the mutation but the clinical condition is inherited in an autosomal recessive pattern.

Some group Stargardt disease (248200), fleck retina of Kandori (228990),  juvenile retinoschisis (312700), and familial benign fleck retina (228980) as well into the category of 'flecked retina disease'.

Other disorders in which retinal flecks may be seen are: spastic paraplegia 15 (270700), hyperoxaluria (259900), Alport syndrome (301050), Bietti-crystalline-corneoretinal-dystrophy (210370 ), Sjogren-Larsson syndrome (270200), pantothenate kinase-associated neurodegeneration (234200), Leber congenital amaurosis (204000), and Bardet-Biedl syndrome (209900),

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

Low vision aids may be useful when macular disease is present.  A recent report describes improvement in peripheral fields and rod function following administration of high-dose oral 9-cis-beta-carotene.

References
Article Title: 

Flecked-retina syndromes

Walia S, Fishman GA, Kapur R. Flecked-retina syndromes. Ophthalmic Genet. 2009 Jun;30(2):69-75..

PubMed ID: 
19373677

Novel mutations in the cellular retinaldehyde-binding protein gene (RLBP1) associated with retinitis punctata albescens: evidence of interfamilial genetic heterogeneity and fundus changes in heterozygotes

Fishman GA, Roberts MF, Derlacki DJ, Grimsby JL, Yamamoto H, Sharon D, Nishiguchi KM, Dryja TP. Novel mutations in the cellular retinaldehyde-binding protein gene (RLBP1) associated with retinitis punctata albescens: evidence of interfamilial genetic heterogeneity and fundus changes in heterozygotes. Arch Ophthalmol. 2004 Jan;122(1):70-5.

PubMed ID: 
14718298

Benign fleck retina

Isaacs TW, McAllister IL, Wade MS. Benign fleck retina. Br J Ophthalmol. 1996 Mar;80(3):267-8. PubMed PMID: 8703867

PubMed ID: 
8703867

Oguchi Disease, Type 2

Clinical Characteristics
Ocular Features: 

The distinctive feature of Oguchi disease is the peculiar and distinctive discoloration of the fundus under various light conditions, known as the Mizuo phenomenon.  Typically, the fundus assumes a golden or gray-white coloration under light adapted conditions but this disappears during acute dark adaptation and only reappears after prolonged time spent in darkness.  Rod dark adaptation is markedly delayed while that of cones is normal.  Single flash cone and 30Hz flicker responses are markedly reduced.  Visual acuity, visual fields and color vision are all normal.   A- and b-waves on single flash ERG are decreased or absent under lighted conditions but increase after prolonged dark adaptation.  Night blindness is present from birth without progression.

Systemic Features: 

No systemic abnormalities are associated with Oguchi disease.

Genetics

Oguchi type 2 disease is an autosomal recessive condition caused by mutations in the rhodopsin kinase (GRK1) gene (13q34) whose product works with arrestin in turning off rhodopsin after light activation as part of the dark adaptation mechanism.

Oguchi type 1 disease (258100) is a similar form of congenital stationary nightblindness caused by mutations in the SAG gene.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available.

References
Article Title: 

Oguchi Disease, Type 1

Clinical Characteristics
Ocular Features: 

The distinctive feature of Oguchi disease is the peculiar and distinctive discoloration of the fundus under various light conditions, known as the Mizuo phenomenon.  Typically, the fundus assumes a golden or gray-white coloration under light adapted conditions but this disappears during acute dark adaptation and only reappears after prolonged time spent in darkness.  Rod dark adaptation is markedly delayed while that of cones is normal.  Visual acuity, visual fields and color vision are all normal.   A- and b-waves on single flash ERG are decreased or absent under lighted conditions but increase after prolonged dark adaptation.  Night blindness is present from birth without progression.

Systemic Features: 

No systemic abnormalities are associated with Oguchi disease.

Genetics

Oguchi type 1 disease is an autosomal recessive condition caused by mutations in the arrestin (SAG) gene (2q37.1) whose product is an intrinsic photoreceptor protein that participates in the recovery phase of light transduction.

Oguchi disease type 2 (613411), a similar form of congenital stationary night blindness, is caused by mutations in the GRK1 gene.  Genotyping is required to distinguish between the two types.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available.

References
Article Title: 

Bietti Crystalline Corneoretinal Dystrophy

Clinical Characteristics
Ocular Features: 

The retina contains refractile glistening intraretinal crystals at all levels and choroidal vessels are said to be sclerosed.  The RPE atrophies and often forms pigment clumps.  The yellow-white crystals may be seen in the peripheral cornea and in the limbus.  Symptoms of night blindness and early vision loss begin about the third decade.  Night blindness is progressive as is the narrowing of the visual fields but this is highly variable between patients.  The visual field may show paracentral scotomas at some stage.  Central acuity can be normal until late in the disease when it becomes markedly impaired. Legal blindness can occur by the 5th decade of life. 

The ERG may show lack of rod and cone responses late in the disease and color vision may be lost.  However, the ffERG and mfERGs show decreases in amplitude of scotopic and photopic responses in all patients, even younger ones.  The EOG becomes abnormal in late stages.  The degree of involvement may be asymmetrical.  Complex lipid inclusions can be seen histologically in choroidal, conjunctival and skin fibroblasts, as well as in keratocytes and lymphocytes.

Crystalline deposits have been detected mostly in the proximal portions of RPE cells adjacent to degenerated retinal  areas.  Most common are circular hyperrefractive structures in the outer nuclear layer adjacent to areas of degeneration.  Some patients have cystoid macular edema. Others in late stages have fundus changes that resemble choroideremia.

Systemic Features: 

No other organ disease has been reported.

Genetics

This is an autosomal recessive disorder caused by mutations in the CYP4V2 gene (4q35.1) involved in fatty acid metabolism.

A homozygous CYP4V2 mutation has also been reported in patients with a choroideremia-like clinical phenotype.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment beyond low vision aids is available.

References
Article Title: 

Bietti crystalline corneoretinal dystrophy is caused by mutations in the novel gene CYP4V2

Li A, Jiao X, Munier FL, Schorderet DF, Yao W, Iwata F, Hayakawa M, Kanai A, Shy Chen M, Alan Lewis R, Heckenlively J, Weleber RG, Traboulsi EI, Zhang Q, Xiao X, Kaiser-Kupfer M, Sergeev YV, Hejtmancik JF. Bietti crystalline corneoretinal dystrophy is caused by mutations in the novel gene CYP4V2. Am J Hum Genet. 2004 May;74(5):817-26. Epub 2004 Mar 23.

PubMed ID: 
15042513

Night Blindness, Congenital Stationary, CSNB2B

Clinical Characteristics
Ocular Features: 

Night blindness is a feature of many pigmentary and other retinal disorders, most of which are progressive.  However, there is also a group of genetically heterogeneous disorders, with generally stable scotopic defects and without RPE changes, known as congenital stationary night blindness (CSNB).  At least 10 mutant genes are responsible with phenotypes so similar that genotyping is usually necessary to distinguish them.  All are caused by defects in visual signal transduction within rod photoreceptors or in defective photoreceptor-to-bipolar cell signaling with common ERG findings of reduced or absent b-waves and generally normal a-waves.  The photopic ERG is usually abnormal to some degree as well and visual acuity may be subnormal.  In the pregenomic era, subtleties of ERG responses were frequently used in an attempt to distinguish different forms of CSNB.  Genotyping now enables classification with unprecedented precision.

In this disorder (CSNB2B) the b-wave responses are deficient (little or no scotopic response) and a-waves seem to be normal.  However, many if not most patients do not complain of night blindness.  Nystagmus, strabismus, and restriction of visual fields may be present.  Visual acuity is mildly to severely reduced.

Foveal thinning has been documented in this condition.

Systemic Features: 

No systemic disease is associated with congenital stationary night blindness.

Genetics

CSNB2B, or type 2B, is one of four congenital nightblindness disorders with autosomal recessive inheritance.  It results from mutations in the CAPB4 gene (11q13.1) important in receptor to bipolar cell signaling.

Other autosomal recessive CSNB disorders are: CSNB1C (613216), CSNB (unclassified; OMIM number pending), and CSNB1B (257270).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment beyond correction of the refractive error is available but tinted lenses are sometimes used to enhance vision.

References
Article Title: 

Night Blindness, Congenital Stationary, CSNB1C

Clinical Characteristics
Ocular Features: 

Night blindness is a feature of many pigmentary and other retinal disorders, most of which are progressive.  However, there is also a group of genetically heterogeneous disorders, with generally stable scotopic defects and without RPE changes, known as congenital stationary night blindness (CSNB).  At least 10 mutant genes are responsible with phenotypes so similar that genotyping is usually necessary to distinguish them.  All are caused by defects in visual signal transduction within rod photoreceptors or in defective photoreceptor-to-bipolar cell signaling with common ERG findings of reduced or absent b-waves and generally normal a-waves.  The photopic ERG is usually abnormal to some degree as well and visual acuity may be subnormal.  In the pregenomic era, subtleties of ERG responses were frequently used in an attempt to distinguish different forms of CSNB.  Genotyping now enables classification with unprecedented precision.

Congenital stationary night blindness disorders are primarily rod dystrophies presenting early with symptoms of nightblindness and relative sparing of central vision.  Nystagmus and photophobia are usually not features.  Dyschromatopsia and loss of central acuity can develop later as the cones eventually become dysfunctional as well but these symptoms are much less severe than those seen in cone-rod dystrophies.  The amount of pigmentary retinopathy is highly variable. 

In this disorder (CSNB1C) the b-wave responses are severely deficient (no scotopic response) and a-waves seem to be normal.  Some reduction in central acuity is common.  High myopia may be present together with nystagmus and strabismus.  In one family, hypoplastic discs and relative thinning of the inner nuclear layer were described in twin brothers.  ERG responses suggest loss of ON bipolar cell function similar to that found in patients with GRM6 mutations (CSNB1B; 257270).

Systemic Features: 

No systemic disease is associated with congenital stationary night blindness.

Genetics

CSNB1C, or type 1C, is one of four congenital nightblindness disorders with autosomal recessive inheritance.  It results from mutations in the TRPM1 (15q13-q14) gene which encodes for a calcium ion channel protein, part of the GRM6 signaling cascade.  

Other autosomal recessive CSNB disorders are: CSNB2B (610427), CSNB (unclassified; OMIM number pending), and CSNB1B (257270).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment beyond correction of the refractive error is available but tinted lenses are sometimes used to enhance vision.  Refractive errors need to be corrected and low vision aids can be helpful for those with some loss of central acuity.

References
Article Title: 

Night Blindness, Congenital Stationary, CSNB1B

Clinical Characteristics
Ocular Features: 

Night blindness is a feature of many pigmentary and other retinal disorders, most of which are progressive.  However, there is also a group of genetically heterogeneous disorders, with generally stable scotopic defects, known as congenital stationary night blindness (CSNB).  At least 10 mutant genes are responsible with phenotypes so similar that genotyping is usually necessary to distinguish them.  All are caused by defects in visual signal transduction within rod photoreceptors or in defective photoreceptor-to-bipolar cell signaling with common ERG findings of reduced or absent b-waves and generally normal a-waves.  However, the photopic ERG can be abnormal to some degree as well and visual acuity may be subnormal.  In the pregenomic era, subtleties of ERG responses were frequently used in an attempt to distinguish different forms of CSNB.  Genotyping now enables classification with unprecedented precision.

Congenital stationary night blindness disorders are primarily rod dystrophies presenting early with symptoms of nightblindness and relative sparing of central vision.  Nystagmus and photophobia are usually not features.  Dyschromatopsia and loss of central acuity can develop later as the cones eventually become dysfunctional as well but these symptoms are much less severe than those seen in cone-rod dystrophies.  The amount of pigmentary retinopathy is highly variable.

In this disorder (CSNB1B) the b-wave responses are severely deficient and a-waves seem to be normal.  Color vision is normal and refractive errors are unremarkable.  Visual acuity ranges from normal to a mild reduction (20/15-20/40).  One patient with 20/40 vision has been reported to have bone spicule pigment clumps in the midperiphery. Several patients with subnormal vision have been reported to have nystagmus.

Patients have a distinctive ERG pattern response to scotopic 15-Hz flicker stimuli that suggest that more than two rod neural pathways exist.

Systemic Features: 

No systemic disease is associated with congenital stationary night blindness.

Genetics

CSNB1B, or type 1B, is one of four CSNB disorders with autosomal recessive inheritance.  It is the result of mutations in the GRM6 gene (5q35) which lead to functional loss of the glutamate receptor.  

Other autosomal recessive CSNB disorders are: CSNB2B (610427), CSNB (unclassified; OMIM number pending), and CSNB1C (613216).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment beyond correction of the refractive error is available but tinted lenses are sometimes used to enhance vision.

References
Article Title: 

Mutations in GRM6 cause autosomal recessive congenital stationary night blindness with a distinctive scotopic 15-Hz flicker electroretinogram

Zeitz C, van Genderen M, Neidhardt J, Luhmann UF, Hoeben F, Forster U, Wycisk K, M?degty?degs G, Hoyng CB, Riemslag F, Meire F, Cremers FP, Berger W. Mutations in GRM6 cause autosomal recessive congenital stationary night blindness with a distinctive scotopic 15-Hz flicker electroretinogram. Invest Ophthalmol Vis Sci. 2005 Nov;46(11):4328-35.

PubMed ID: 
16249515

Marinesco-Sjogren Syndrome

Clinical Characteristics
Ocular Features: 

Congenital cataracts are one of the cardinal features of Marinesco-Sjogren syndrome but lens opacities may have a later onset and may be progressive as well.  Strabismus and nystagmus are sometimes present.

Systemic Features: 

Non-ocular features include cerebellar atrophy, psychomotor developmental delays, mental retardation, and muscle weakness.  Dysarthria is common.  The myopathy has its onset in childhood and is progressive with weakness, hypotonia, and atrophy eventually leading to total disability in some cases.  Progression of motor dysfunction may, however, stabilize in some patients but at an unpredictable level.  Infants are often 'floppy babies'.  MRI studies reveal cerebellar atrophy.  Serum creatine kinase levels are increased and muscle biopsies show chronic myopathic changes.  Skeletal features include short stature, pectus carinatum, and secondary kyphoscoliosis and foot deformities.  Bone abnormalities may be seen in the digits.

Genetics

This is an autosomal recessive condition resulting from mutations in the SIL1 gene (5q31).  It is sometimes confused with the condition known as congenital cataracts, facial dysmorphism, and neuropathy (604168) with which it shares some clinical features.  The two conditions are genetically distinct since they are caused by mutations in different genes.

See also Muscular Dystrophy, Congenital Cataracts, with Cataracts and Intellectual Disability for a similar disorder caused by a different mutation.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Visually significant cataracts may need to be removed in the first decade of life.  Skeletal deformities may benefit from surgery and hormone therapy should be considered in specific cases.

References
Article Title: 

The gene disrupted in Marinesco-Sjögren syndrome encodes SIL1, an HSPA5 cochaperone

Anttonen AK, Mahjneh I, Hamalainen RH, Lagier-Tourenne C, Kopra O, Waris L, Anttonen M, Joensuu T, Kalimo H, Paetau A, Tranebjaerg L, Chaigne D, Koenig M, Eeg-Olofsson O, Udd B, Somer M, Somer H, Lehesjoki AE. The gene disrupted in Marinesco-Sjogren syndrome encodes SIL1, an HSPA5 cochaperone. Nat Genet. 2005 Dec;37(12):1309-11.

PubMed ID: 
16282978

Linkage to 18qter differentiates two clinically overlapping syndromes: congenital cataracts-facial dysmorphism-neuropathy (CCFDN) syndrome and Marinesco-Sjogren syndrome

Lagier-Tourenne C, Chaigne D, Gong J, Flori J, Mohr M, Ruh D, Christmann D, Flament J, Mandel JL, Koenig M, Dollfus H. Linkage to 18qter differentiates two clinically overlapping syndromes: congenital cataracts-facial dysmorphism-neuropathy (CCFDN) syndrome and Marinesco-Sjogren syndrome. J Med Genet. 2002 Nov;39(11):838-43.

PubMed ID: 
12414825

Cataracts, Congenital, Facial Dysmorphism, and Neuropathy

Clinical Characteristics
Ocular Features: 

Cataracts, microphthalmia, and microcornea (mean diameter ~7.5 mm) are present at birth and precede the onset of neurological symptoms.  The lens opacities often consist of anterior and posterior subcapsular opacities but the entire lens may be opaque as well.  Some adults have bilateral ptosis.  The pupils are often small and have sluggish responses to light and mydriatics.  Strabismus and horizontal pendular nystagmus are common.  Visual impairment may be severe.

Systemic Features: 

The neuropathy is primarily motor and usually begins in the lower extremities but is progressive and eventually involves the arms as well.  Motor development is slow and walking is often unsteady from the start.  Speaking may not have its onset until 3 years of age.   Mild, nonprogresssive cognitive defects and mental retardation are often present.  Sensory neuropathy with numbness and tingling develops in the second decade.  Mild chorea, upper limb tremor, mild ataxia, and extensor plantar responses may be seen.  Deafness has been described.  Nerve conduction studies and biopsies have documented a demyelinating polyneuropathy while MRIs demonstrate cerebral and spinal cord atrophy which may be seen in the first decade of life.  The MRI in many patients reveals diffuse cerebral atrophy, enlargement of the lateral ventricles and focal lesions in subcortical white matter.  Most individuals have mild cognitive deficits while psychometric testing reveals borderline intelligence in a minority.

Patients are susceptible to acute rhabdomyolysis following viral infections.  Most are severely disabled by the third decade.

The facial dysmorphism appears in childhood and consists of a prominent midface, hypognathism, protruding teeth, and thickening of the lips.  Spinal deformities occur in the majority of individuals along with foot and hand claw deformities.  All patients are short in stature.  Hypogonadotropic hypogonadism is a common feature and females may be infertile.  Amenorrhea is often present by the age of 25-35 years.

Genetics

This is an autosomal recessive disorder found primarily among European Gypsies.  It is caused by mutations in the CTDP1 gene (18q23-qter).  It is sometimes confused with Marinesco-Sjogren syndrome (248800) with which it shares some clinical features but the two are genetically distinct.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Cataracts often require removal in the first decade of life. Scoliosis and foot deformities may benefit from surgical correction.  Supportive care and physical therapy can be helpful.

References
Article Title: 

Linkage to 18qter differentiates two clinically overlapping syndromes: congenital cataracts-facial dysmorphism-neuropathy (CCFDN) syndrome and Marinesco-Sjogren syndrome

Lagier-Tourenne C, Chaigne D, Gong J, Flori J, Mohr M, Ruh D, Christmann D, Flament J, Mandel JL, Koenig M, Dollfus H. Linkage to 18qter differentiates two clinically overlapping syndromes: congenital cataracts-facial dysmorphism-neuropathy (CCFDN) syndrome and Marinesco-Sjogren syndrome. J Med Genet. 2002 Nov;39(11):838-43.

PubMed ID: 
12414825

Congenital cataracts facial dysmorphism neuropathy syndrome, a novel complex genetic disease in Balkan Gypsies: clinical and electrophysiological observations

Tournev I, Kalaydjieva L, Youl B, Ishpekova B, Guergueltcheva V, Kamenov O, Katzarova M, Kamenov Z, Raicheva-Terzieva M, King RH, Romanski K, Petkov R, Schmarov A, Dimitrova G, Popova N, Uzunova M, Milanov S, Petrova J, Petkov Y, Kolarov G, Aneva L, Radeva O, Thomas PK. Congenital cataracts facial dysmorphism neuropathy syndrome, a novel complex genetic disease in Balkan Gypsies: clinical and electrophysiological observations. Ann Neurol. 1999 Jun;45(6):742-50.

PubMed ID: 
10360766

Rothmund-Thomson Syndrome

Clinical Characteristics
Ocular Features: 

Patients have been reported with juvenile and infantile cataracts.  Reported prevalence varies possibly because the diagnostic criteria have not been established and more than one disorder may be represented by the title.  Rothmund (an ophthalmologist) originally reported two families of 5 children in which lens opacities were found, but Thomson, who was a dermatologist, in a later report did not mention cataracts.  The lens opacities are usually nuclear or posterior cortical in location and may be evident in 50% of patients.  Iris stromal changes such as hypoplasia have also been reported.  Eyelashes and/or eyebrows may be sparse.  This is likely the same disorder as the previously described ‘mesodermal dysgenesis of the iris and skeletal dysplasia’ and formerly listed as 270240 in OMIM.

Systemic Features: 

This is a clinically heterogeneous disorder.  Skin atrophy with pigmentary changes, telangiectasia, short stature, premature aging, and skeletal abnormalities are characteristic.  There is an increased risk of malignancy, particularly osteosarcomas and skin cancer.  Saddle nose, sparse hair, hypogonadism, dysplastic nails, and teeth anomalies have also been described.

The skin is usually normal at birth but an erythematous rash typically appears in the first six months of life accompanied by swelling and blistering.  Eventually areas of hypo- and hyperpigmentation appear in a reticulated pattern with spots of punctate atrophy and telangiectasia.  Hyperkeratosis of the soles of the feet is common.  The skeletal abnormalities of dysplasia, radial ray defects, and missing bones are often evident at birth while osteopenia and delayed bone maturation are evident later.

Genetics

This is an autosomal recessive disorder in which most patients have mutations in the RECQL4 gene (8q24.3).

Mutations in the same gene cause Baller-Gerold syndrome (218600) suggesting that the two disorders are allelic but the phenotypes are considerably different.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

There is no treatment for the primary disorder but patients must be monitored for malignancies.  Visually significant cataracts should be removed.  It has been recommended that patients avoid excessive sun exposure to reduce the risk of skin cancers.

References
Article Title: 

Pages

Subscribe to RSS - autosomal recessive