autosomal recessive

Usher Syndrome Type IV

Clinical Characteristics
Ocular Features: 

Nyctalopia is a complaint in adults in by midlife but most individuals deny visual symptoms prior to the 5th decade.  Perimetry reveals a ring-shaped scotoma extending from the paracentral area to the midperiphery (5 to 30 degrees).  Full-field ERGs show decreased photoreceptor responses by the 5th decade or late with the rods more severely affected than the cones.  Some dyschromatopsia is usually present.  Patients have a significant and progressive loss of visual acuity.  Ring-shaped areas of retinal pigment atrophy may extend from the pericentral area to the temporal arcades with relative sparing of the fovea early but older individuals have foveal degeneration as well.  The Arden EOG ratio is usually lower than normal.

Systemic Features: 

Five individuals in three Yemenite Jewish families have been described with this type of Usher syndrome.  A neurosensory hearing loss is present by midlife but no other systemic signs have been reported. 

Genetics

Homozygosity of a missense mutation in the ARSG gene (17q24.2) is responsible for this condition.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No specific treatment for this condition is available.  However, assistive hearing devices such as cochlear implants and corrective lenses with appropriate tinting can be beneficial.

References
Article Title: 

Short Stature, Hearing Loss, Retinitis Pigmentosa, and Distinctive Facies

Clinical Characteristics
Ocular Features: 

Two of 3 patients from 2 unrelated German families had myopia and the fundus changes of retinitis pigmentosa.  One was a 28-year-old male and the other was a 44-year-old female from the other family.  In addition, the female was described as having a corneal dystrophy and glaucoma and the male was noted to have nystagmus.

Systemic Features: 

Patients have a marked shortness of stature which may be evident in the first years of life.   Brachydactyly with broad thumbs is present.  Mild intellectual disability is usually a feature as are a high forehead, deep-set eyes, short and upslanting palpebral fissures, and a short nose with anteverted nares. A wide nasal base with thin upper lips, and low-set posteriorly rotated ears may be noted.  Speech is usually delayed and a progressive sensorineural hearing loss may develop in the first few years of life.  Patients appear to age prematurely with sparse hair and arterial hypertension.

MRI imaging may reveal cerebellar atrophy and dysmyelination.  One individual had calcifications in the basal ganglia and thalamus.

Genetics

Homozygous or compound heterozygous mutations in the EXOSC2 gene (9p34) are responsible for this condition.Homozygous or compound heterozygous mutations in the EXOSC2 gene (9p34) are responsible for this condition.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Mutations in EXOSC2 are associated with a novel syndrome characterised by retinitis pigmentosa, progressive hearing loss, premature ageing, short stature, mild intellectual disability and distinctive gestalt

Di Donato N, Neuhann T, Kahlert AK, Klink B, Hackmann K, Neuhann I, Novotna B, Schallner J, Krause C, Glass IA, Parnell SE, Benet-Pages A, Nissen AM, Berger W, Altmuller J, Thiele H, Weber BH, Schrock E, Dobyns WB, Bier A, Rump A. Mutations in EXOSC2 are associated with a novel syndrome characterised by retinitis pigmentosa, progressive hearing loss, premature ageing, short stature, mild intellectual disability and distinctive gestalt. J Med Genet. 2016 Jun;53(6):419-25.

PubMed ID: 
26843489

Leukodystrophy, Hypomyelinating, 15

Clinical Characteristics
Ocular Features: 

Severe optic atrophy with marked vision loss is commonly present.  Hypermetropia and nystagmus have also been reported.

Systemic Features: 

The clinical features of 4 unrelated patients are highly variable.  Onset of clinical signs is also variable and most are progressive.   Several patients have presented in the first month of life with microcephaly and delayed motor development.  Progressive cerebellar signs of ataxia with dystonia, dysphagia and motor signs from infancy has been seen.  Other patients with cognitive deterioration and progressive neurologic deficits may present late in the first decade of life at which time ataxia, dysarthria, spasticity, and pyramidal signs nay also be noted.  Dystonic and athetoid movements and intention tremor have been reported in some patients.

Brain MRIs in older individuals in the second decade of life reveal hypomyelinating leukodystrophy with thinning of the corpus callosum and cerebellar atrophy.

Genetics

Homozygous or compound heterozygous mutations in the EPRS (1q41) gene are responsible for this autosomal recessive disorder.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

Microcephaly 20, Primary, Autosomal Recessive

Clinical Characteristics
Ocular Features: 

Microphthalmia and optic nerve hypoplasia with "blindness" seem to be common.

Systemic Features: 

Short stature and global developmental delay are usually present.  Poor or absent speech is characteristic and intellectual disability may be severe.  Few individuals can walk.  Foot deformities and hypotonia are often present.  Behavior problems are common having features of ADHD, autism, and aggression.  Foot deformities have been noted. 

Imaging of the brain may reveal cerebellar hypoplasia, a simplified gyral pattern, and absence of the corpus callosum. 

Genetics

Homozygous or compound heterozygous mutations in the KIF14 gene (1q32.1) are responsible for this disorder.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Biallelic variants in KIF14 cause intellectual disability with microcephaly

Makrythanasis P, Maroofian R, Stray-Pedersen A, Musaev D, Zaki MS, Mahmoud IG, Selim L, Elbadawy A, Jhangiani SN, Coban Akdemir ZH, Gambin T, Sorte HS, Heiberg A, McEvoy-Venneri J, James KN, Stanley V, Belandres D, Guipponi M, Santoni FA, Ahangari N, Tara F, Doosti M, Iwaszkiewicz J, Zoete V, Backe PH, Hamamy H, Gleeson JG, Lupski JR, Karimiani EG, Antonarakis SE. Biallelic variants in KIF14 cause intellectual disability with microcephaly. Eur J Hum Genet. 2018 Mar;26(3):330-339.

PubMed ID: 
29343805

Mutations of KIF14 cause primary microcephaly by impairing cytokinesis

Moawia A, Shaheen R, Rasool S, Waseem SS, Ewida N, Budde B, Kawalia A, Motameny S, Khan K, Fatima A, Jameel M, Ullah F, Akram T, Ali Z, Abdullah U, Irshad S, Hohne W, Noegel AA, Al-Owain M, Hortnagel K, Stobe P, Baig SM, Nurnberg P, Alkuraya FS, Hahn A, Hussain MS. Mutations of KIF14 cause primary microcephaly by impairing cytokinesis. Ann Neurol. 2017 Oct;82(4):562-577.

PubMed ID: 
28892560

Elsahy-Waters Syndrome

Clinical Characteristics
Ocular Features: 

Structural anomalies of periocular tissues are common.  Hypertelorism, proptosis, and telecanthus may be striking.  Colobomas or clefts of the upper lid are frequently seen.  The eyebrows are bushy and synophyrs may be present across a broad nasal bridge.  Megalocornea, downslanting lid fissures, glaucoma and cataracts have also been reported but are uncommon.

Systemic Features: 

The skull has been described as brachycephalic.  The midface is flat due to maxillary hypoplasia. The lower jaw is prominent and some patients have mandibular prognathism.  A bifid uvula or partial clefting of the palate are common.  Low-set and posteriorly rotated ears have been reported as well.

 Both pectus excavatum and pectus carinatum have been described.  The teeth have dysplastic enamel and often have obliterated pulp chambers and dental cysts.  Their roots may be shortened and deformed and they are often lost early.  Vertebrae may have fusion of the spines, particularly in the cervical area.  A mixed type of hearing loss is common and some degree of intellectual disability is often evident, especially in older individuals.  Most males have some degree of hypospadias.  Cryptorchidism has been reported in one individual.

Brain imaging in one case revealed no abnormalities.

Genetics

This disorder results from biallelic mutations in the CDH11 gene (16q21).  The parents have been consanguineous in most reports and no vertical transmission has been documented making autosomal recessive the most likely pattern of inheritance.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment for the general disorder has been reported.  Eyelid and palatal defects may be surgically repaired and assistive hearing devices may be of benefit.  Special education is also likely to be helpful.

References
Article Title: 

Heimler Syndrome 1

Clinical Characteristics
Ocular Features: 

Some patients have mottling of the retinal pigment and features of macular dystrophy.

Systemic Features: 

Primary dentition seems to be normal but secondary teeth have generalized enamel hypoplasia.  Severe bilateral sensorineural hearing loss has been diagnosed in the first or second year of life.  The toenails have transverse ridges (Beau lines) and the fingernails exhibit leukonychia.

Due to the small number of reported families, there is some uncertainty regarding the specificity of the clinical features among the Heimler 1 and Heimler 2 syndromes.

Genetics

Biallelic mutations in the PEX1 gene (7q21.2) are responsible for this syndrome.

Heimler Syndrome 2 (616617) seems to be a unique disorder of peroxisome biogenesis resulting from biallelic mutations in the PEX6 gene.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Spectrum of PEX1 and PEX6 variants in Heimler syndrome

Smith CE, Poulter JA, Levin AV, Capasso JE, Price S, Ben-Yosef T, Sharony R, Newman WG, Shore RC, Brookes SJ, Mighell AJ, Inglehearn CF. Spectrum of PEX1 and PEX6 variants in Heimler syndrome. Eur J Hum Genet. 2016 Nov;24(11):1565-1571.

PubMed ID: 
27302843

Heimler Syndrome Is Caused by Hypomorphic Mutations in the Peroxisome-Biogenesis Genes PEX1 and PEX6

Ratbi I, Falkenberg KD, Sommen M, Al-Sheqaih N, Guaoua S, Vandeweyer G, Urquhart JE, Chandler KE, Williams SG, Roberts NA, El Alloussi M, Black GC, Ferdinandusse S, Ramdi H, Heimler A, Fryer A, Lynch SA, Cooper N, Ong KR, Smith CE, Inglehearn CF, Mighell AJ, Elcock C, Poulter JA, Tischkowitz M, Davies SJ, Sefiani A, Mironov AA, Newman WG, Waterham HR, Van Camp G. Heimler Syndrome Is Caused by Hypomorphic Mutations in the Peroxisome-Biogenesis Genes PEX1 and PEX6. Am J Hum Genet. 2015 Oct 1;97(4):535-45.

PubMed ID: 
26387595

Macular dystrophy in Heimler syndrome

Lima LH, Barbazetto IA, Chen R, Yannuzzi LA, Tsang SH, Spaide RF. Macular dystrophy in Heimler syndrome. Ophthalmic Genet. 2011 Jun;32(2):97-100.

PubMed ID: 
21366429

Spastic Paraplegia 5A

Clinical Characteristics
Ocular Features: 

Gaze-evoked nystagmus and saccadic pursuit movements are present in about 10% of patients.  Optic atrophy was reported in one individual.  Rare patients have been reported to have cataracts.  

Systemic Features: 

This is a progressive disorder of neurological deterioration.  Age of onset (mean 16.4 years) and rate of neurological dysfunction are highly variable.  Gait difficulties are the most common presenting signs.  Some gait ataxia is usually present.  The lower limbs are more severely affected by spasticity and weakness and walking is often delayed with difficulty running and clumsiness in childhood.  Some patients (38%) are wheelchair-bound after disease duration of more than 33 years.  Dysphagia and dysarthria are uncommon. 

Some sensory impairments such as impaired vibratory sense, decreased proprioception, and absent touch sensation in the lower extremities are frequently present.  Urge incontinence of bladder and rectum is sometimes a feature.

Genetics

Bialllelic mutations in the CYP7B1 gene (8q12.3) have been identified in this disorder resulting in a marked accumulation of neurotoxic oxysterols in plasma and CSF.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No effective treatment for the general disorder has been reported.

References
Article Title: 

Hereditary spastic paraplegia type 5: natural history, biomarkers and a randomized controlled trial

Schols L, Rattay TW, Martus P, Meisner C, Baets J, Fischer I, Jagle C, Fraidakis MJ, Martinuzzi A, Saute JA, Scarlato M, Antenora A, Stendel C, Hoflinger P, Lourenco CM, Abreu L, Smets K, Paucar M, Deconinck T, Bis DM, Wiethoff S, Bauer P, Arnoldi A, Marques W, Jardim LB, Hauser S, Criscuolo C, Filla A, Zuchner S, Bassi MT, Klopstock T, De Jonghe P, Bjorkhem I, Schule R. Hereditary spastic paraplegia type 5: natural history, biomarkers and a randomized controlled trial. Brain. 2017 Dec 1;140(12):3112-3127.

PubMed ID: 
29126212

CYP7B1 mutations in pure and complex forms of hereditary spastic paraplegia type 5

Goizet C, Boukhris A, Durr A, Beetz C, Truchetto J, Tesson C, Tsaousidou M, Forlani S, Guyant-Marechal L, Fontaine B, Guimaraes J, Isidor B, Chazouilleres O, Wendum D, Grid D, Chevy F, Chinnery PF, Coutinho P, Azulay JP, Feki I, Mochel F, Wolf C, Mhiri C, Crosby A, Brice A, Stevanin G. CYP7B1 mutations in pure and complex forms of hereditary spastic paraplegia type 5. Brain. 2009 Jun;132(Pt 6):1589-600.

PubMed ID: 
19439420

Brown-Vialetto-Van Laere Syndrome 2

Clinical Characteristics
Ocular Features: 

Decreased vision, optic atrophy, and nystagmus are frequently present.  Pupillary reflexes may be absent.

Systemic Features: 

Rapidly progressive muscle weakness and ataxia present in childhood.  Early development may be normal but the first symptoms usually appear by age 2 or 3 years of age.  Cognition is usually normal.  Exercise intolerance soon appears along with dysphonia, dyspnea, dysphagia, and weakness of shoulder, neck and axial muscles.  Wasting and weakness of hand muscles is often noticeable.  Kyphoscoliosis, tongue fasciculations, and areflexia are often seen.  Sensorineural hearing loss is a common feature.

Death from respiratory insufficiency often occurs within a few years after onset.

Genetics

Homozygous mutations in the SLC52A2 (8q24.3) gene have been identified in patients with this disorder.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Administration of riboflavin has been reported to be beneficial in lessening symptoms.

References
Article Title: 

SLC52A2 mutations cause SCABD2 phenotype: A second report

Babanejad M, Adeli OA, Nikzat N, Beheshtian M, Azarafra H, Sadeghnia F, Mohseni M, Najmabadi H, Kahrizi K. SLC52A2 mutations cause SCABD2 phenotype: A second report. Int J Pediatr Otorhinolaryngol. 2018 Jan;104:195-199.

PubMed ID: 
29287867

Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2

Foley AR, Menezes MP, Pandraud A, Gonzalez MA, Al-Odaib A, Abrams AJ, Sugano K, Yonezawa A, Manzur AY, Burns J, Hughes I, McCullagh BG, Jungbluth H, Lim MJ, Lin JP, Megarbane A, Urtizberea JA, Shah AH, Antony J, Webster R, Broomfield A, Ng J, Mathew AA, O'Byrne JJ, Forman E, Scoto M, Prasad M, O'Brien K, Olpin S, Oppenheim M, Hargreaves I, Land JM, Wang MX, Carpenter K, Horvath R, Straub V, Lek M, Gold W, Farrell MO, Brandner S, Phadke R, Matsubara K, McGarvey ML, Scherer SS, Baxter PS, King MD, Clayton P, Rahman S, Reilly MM, Ouvrier RA, Christodoulou J, Zuchner S, Muntoni F, Houlden H. Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2. Brain. 2014 Jan;137(Pt 1):44-56.

PubMed ID: 
24253200

Myopathy, Mitochondrial Anomalies, and Ataxia

Clinical Characteristics
Ocular Features: 

Ocular findings are variable.  One of three individuals with compound heterozygous mutations had a pigmentary retinopathy with pallor of the optic nerve but no visual abnormalities.  Her sister had only optic nerve pallor.  The eyes are described as "small" and "close-set".

No ocular findings were reported for the family with autosomal dominant inheritance.

Systemic Features: 

Ataxia, short stature, and gait difficulties from an early age are consistent findings.  Some patients are never able to walk.  Motor development is generally delayed.  Truncal and limb ataxia is a feature.  Some degree of intellectual disability is generally present and speech is often delayed.  

The face is long with a myopathic appearance.  Both micrognathia and a prominent jaw may be seen.  The palate is highly arched.  Patients are described as hypotonic and there is generalized muscle weakness both proximal and distal.  Distal sensory impairment has been described in the family with presumed dominant inheritance and there may be psychiatric symptoms of anxiety, depression, and schizophrenia.  Dysmetria with dysdiadochokinesis is often present and a fine intention tremor has been observed.

Mitochondria in fibroblasts exhibit abnormal dynamics and occur in a fragmented network.  Muscle biopsies reveal changes consistent with myopathy.  Serum creatine kinase may be elevated.

Genetics

Compound heterozygous mutations in the MSTO1 gene (1q22) have been found in two families with 3 affected individuals suggesting autosomal recessive inheritance.  In a third family, heterozygous mutations in the same gene were found in a mother and 3 of her adult children, consistent with autosomal dominant transmission.

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Retinitis Pigmentosa 81

Clinical Characteristics
Ocular Features: 

Patients often complain of night vision problems before the age of 5 years.  Fundus changes of optic nerve pallor, retinal vessel attenuation, and bone spicule pigmentary clumping in the midperiphery are evident by the third decade of life.  Progressive RPE and choroidal atrophy in the macula have been described and may be progressive.  ERG responses are absent from at least 28 years of age.

Systemic Features: 

No systemic abnormalities have been reported.

Genetics

One consanguineous Pakistani family containing 9 affected members with retinal degeneration has been reported.  Homozygosity of a missense mutation in the IFT43 gene (14q24.3) was found in 4 affected sibs.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

A mutation in IFT43 causes non-syndromic recessive retinal degeneration

Biswas P, Duncan JL, Ali M, Matsui H, Naeem MA, Raghavendra PB, Frazer KA, Arts HH, Riazuddin S, Akram J, Hejtmancik JF, Riazuddin SA, Ayyagari R. A mutation in IFT43 causes non-syndromic recessive retinal degeneration. Hum Mol Genet. 2017 Dec 1;26(23):4741-4751.

PubMed ID: 
28973684

Pages

Subscribe to RSS - autosomal recessive