sensorineural deafness

Coloboma, Microphthalmia, Albinism, and Deafness

Clinical Characteristics
Ocular Features: 

A 5 year old male has been described with uveal colobomas in microphthalmic eyes plus small corneas with a pannus, dense cataracts, translucent irides, and hypopigmentation of the skin, hair and eyes.  A brain MRI showed hypoplasia of the optic nerves and chiasm.   

A 9 month old female from another family had severe microphthalmia and small optic nerves.  The internal ocular features were not reported.

Systemic Features: 

The complete phenotype is uncertain since it is based on only two reported and unrelated individuals.  The head circumference one one patient was consistent with macrocephaly accompanied by frontal bossing, shallow orbits, preauricular pits and posteriorly rotated ears.  A skeletal survey revealed evidence for osteopetrosis.  He had a sensorineural hearing deficit said to be congenital in onset.

The other patient, a 9 month old female, belonged to another nonconsanguineous family, and had similar skeletal and craniofacial features with the addition of micrognathia and hypotonia.  Congenital neurosensory hearing loss and general lack of pigmentation were noted.

All four parents have congenital sensorineural hearing loss, blue irides and fair skin with premature graying of hair.  Four sibs in the two families have phenotypes similar to that of the parents.  Only one child, a female, had no features of the phenotype.

Genetics

This condition, so far reported only in a male and a female in unrelated families, is the result of doubly heterozygous mutations in the MITF gene (3p13).  One mutation that causes Waardenburg syndrome 2  (WS2A) (193510) is combined with a dominant-negative allele (c.952_954delAGA [p.Arg318del]) to produce the phenotype.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Takenouchi-Kosaki Syndrome

Clinical Characteristics
Ocular Features: 

The ocular phenotype consists of mild ptosis, synophrys, exotropia, and eversion of the lower eyelids.  One of two reported patients was described as having bilateral retinal dysplasia and a falciform retinal detachment in one eye.  Visual acuity is significantly impaired.

Systemic Features: 

Affected individuals may be of normal birth weight but skeletal growth is subnormal and there is general developmental delay.  Congenial cardiac anomalies such as persistent ductus arteriosus may be present.  Lymphedema has been noted at one year of age and probably persists throughout life.  Protein-losing enteropathy secondary to intestinal lymphangiectasia was present in one individual.  The same patient had pericardial effusion, hydrothorax, and ascites.  Intellectual disability may be severe although there is no evidence of progression.  Neurosensory hearing loss has been described in one patient.

Thrombocytopenia is a consistent finding and has been described as early as one year of age.  Platelet numbers as low as 52,000/microL have been recorded and appear larger than normal. 

Genetics

Both unrelated female patients reported have heterozygous missense mutations in the CDC42 gene (1p36). 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Myopia and Deafness

Clinical Characteristics
Ocular Features: 

High myopia (6-11D) is usually diagnosed during infancy or in the first year of life.  Nine patients so far reported have ranged in age from 13 to 60 years if age.  Vitreoretinal degeneration has not been reported.

Systemic Features: 

Prelingual hearing loss has been identified in all patients, ranging in severity from moderate to severe.  No other neurological problems have been found.  CT scans of the temporal bone are normal.  No developmental delays or cognitive deficits have been identified.

Genetics

SLITRK family genes code for membrane proteins, expressed primarily in neural tissues. Mutations in SLITRK6 in the reported families cause loss of function.  In cultured cells from rodents the protein product impacts synapse induction and neurite modulation.  In Slitrk6 knockout mice, there is a reduction of cochlear innervations with reduced startle responses and impaired brainstem responses.  Axial length in these mice is normal at birth but adults have a significant increase in eye size.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

The refractive error should be corrected and assistive hearing devices may be helpful.

References
Article Title: 

SLITRK6 mutations cause myopia and deafness in humans and mice

Tekin M, Chioza BA, Matsumoto Y, Diaz-Horta O, Cross HE, Duman D, Kokotas H, Moore-Barton HL, Sakoori K, Ota M, Odaka YS, Foster J 2nd, Cengiz FB, Tokgoz-Yilmaz S, Tekeli O, Grigoriadou M, Petersen MB, Sreekantan-Nair A, Gurtz K, Xia XJ, Pandya A, Patton MA, Young JI, Aruga J, Crosby AH. SLITRK6 mutations cause myopia and deafness in humans and mice. J Clin Invest. 2013 May 1;123(5):2094-102.

PubMed ID: 
23543054

Peroxisome Biogenesis Disorder 1B (neonatal adrenoleukodystrophy)

Clinical Characteristics
Ocular Features: 

This peroxisomal disorder presents in the first year of life with both systemic and ocular features.  Night blindness is the major ocular feature and at least some have optic atrophy similar to the adult form.  Central acuity is reduced secondary to macular degeneration.  A pigmentary retinopathy is frequently present and often follows the appearance of whitish retinal flecks in the midperipheray.  Nystagmus and cataracts are common features.  Reduction or absence of ERG responses can be used in young children to document the retinopathy.  Blindness and deafness commonly occur in childhood.

Systemic Features: 

This disorder is classified as a leukodystrophy, or disease of white matter of the brain, associated with the breakdown of phytanic acid.  Ataxia and features of motor neuron disease are evident early.  Hepatomegaly and jaundice may also be early diagnostic features as bile acid metabolism is defective.  Infant hypotonia is often seen.  Nonspecific facial dysmorphism has been reported.  The ears are low-set and epicanthal folds are present.  The teeth are abnormally large and often have yellowish discoloration.  Postural unsteadiness is evident when patients begin walking.  Diagnosis can be suspected from elevated serum phytanic and pipecolic acid (in 20% of patients) or by demonstration of decreased phytanic acid oxidation in cultured fibroblasts.  Other biochemical abnormalities such as hypocholesterolemia, and elevated very long chain fatty acids and trihydroxycholestanoic acid are usually present.  Anosmia, developmental delays, and mental retardation are nearly universal features.  Early mortality in infancy or childhood is common.

Genetics

This is a genetically heterogeneous disorder of peroxisome biogenesis caused by mutations in at least three genes, PEX1 (7q21-q22), PEX2 (8q21.1), and PEX6 (22q11-21).  Each is inherited in an autosomal recessive pattern.  The mechanism of disease is different from the classic or adult Refsum disorder (266500) and some have debated whether the term ‘infantile Refsum disease’ is appropriate.

This disorder shares some clinical features with other peroxisomal disorders such as Zellweger syndrome (214100) and rhizomelic chondrodysplasia punctata (215100).  Zellweger syndrome (214100), neonatal adrenoleukodystrophy and infantile Refsum disease (601539) are now considered to be peroxisomal biogenesis or Zellweger spectrum disorders.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No effective treatment is known.

References
Article Title: 

Refsum Disease, Adult

Clinical Characteristics
Ocular Features: 

A retinitis pigmentosa-like retinopathy is the major ocular manifestation of this disease.  There is typical night blindness and visual field constriction.   Rod ERG responses are usually subnormal.  However, central acuity is also reduced due to a degenerative maculopathy.   Cataracts and optic atrophy are common.  The macula may undergo progressive degeneration and optic atrophy is not uncommon.  Some patients have defective pupillary responses.

Systemic Features: 

Onset of symptoms is usually late in the first decade and sometimes into the third decade.  There is usually a polyneuropathy with impaired motor reflexes and paresis in the limbs.  A progressive sensorineural hearing loss occurs in many patients.  Sensory deficits also occur.  Some have ataxia and skin changes of ichthyosis.  Anosmia is a near universal feature.  Heart failure may occur and cardiac abnormalities such as conduction defects can occur.  A variety of skeletal abnormalities such as pes cavus, short fourth metatarsals, and evidence of epiphyseal dysplasia have been reported.  There is considerable clinical heterogeneity even within families.

Phytanic acid oxidase activity as measured in fibroblasts is often low while serum phytanic acid is increased.  The cerebrospinal fluid contains increased protein but no increase in cells.

Genetics

This disorder results from mutations in the PHYH (PAHX) gene (10pter-p11.2) encoding phytanoyl-CoA hydroxylase, or, more rarely in PEX7 (6q22-q24) encoding peroxin-7 resulting in an uncommon condition (10% of cases) sometimes called adult Refsum disease-2. 

Mutations in the latter gene also cause rhizomelic chondrodysplasia punctata type 1 (215100) which does not have all of the neurological features or the retinopathy.

There is also so-called infantile form of Refsum disease (266510).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

A diet low in phytanic acid can lead to improvement in the neurologic symptoms such as the ataxia and polyneuropathy but must be instituted in early stages of the disease.  This approach may not be as beneficial for the visual or auditory symptoms.

References
Article Title: 

Cataracts, Congenital, Facial Dysmorphism, and Neuropathy

Clinical Characteristics
Ocular Features: 

Cataracts, microphthalmia, and microcornea (mean diameter ~7.5 mm) are present at birth and precede the onset of neurological symptoms.  The lens opacities often consist of anterior and posterior subcapsular opacities but the entire lens may be opaque as well.  Some adults have bilateral ptosis.  The pupils are often small and have sluggish responses to light and mydriatics.  Strabismus and horizontal pendular nystagmus are common.  Visual impairment may be severe.

Systemic Features: 

The neuropathy is primarily motor and usually begins in the lower extremities but is progressive and eventually involves the arms as well.  Motor development is slow and walking is often unsteady from the start.  Speaking may not have its onset until 3 years of age.   Mild, nonprogresssive cognitive defects and mental retardation are often present.  Sensory neuropathy with numbness and tingling develops in the second decade.  Mild chorea, upper limb tremor, mild ataxia, and extensor plantar responses may be seen.  Deafness has been described.  Nerve conduction studies and biopsies have documented a demyelinating polyneuropathy while MRIs demonstrate cerebral and spinal cord atrophy which may be seen in the first decade of life.  The MRI in many patients reveals diffuse cerebral atrophy, enlargement of the lateral ventricles and focal lesions in subcortical white matter.  Most individuals have mild cognitive deficits while psychometric testing reveals borderline intelligence in a minority.

Patients are susceptible to acute rhabdomyolysis following viral infections.  Most are severely disabled by the third decade.

The facial dysmorphism appears in childhood and consists of a prominent midface, hypognathism, protruding teeth, and thickening of the lips.  Spinal deformities occur in the majority of individuals along with foot and hand claw deformities.  All patients are short in stature.  Hypogonadotropic hypogonadism is a common feature and females may be infertile.  Amenorrhea is often present by the age of 25-35 years.

Genetics

This is an autosomal recessive disorder found primarily among European Gypsies.  It is caused by mutations in the CTDP1 gene (18q23-qter).  It is sometimes confused with Marinesco-Sjogren syndrome (248800) with which it shares some clinical features but the two are genetically distinct.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Cataracts often require removal in the first decade of life. Scoliosis and foot deformities may benefit from surgical correction.  Supportive care and physical therapy can be helpful.

References
Article Title: 

Linkage to 18qter differentiates two clinically overlapping syndromes: congenital cataracts-facial dysmorphism-neuropathy (CCFDN) syndrome and Marinesco-Sjogren syndrome

Lagier-Tourenne C, Chaigne D, Gong J, Flori J, Mohr M, Ruh D, Christmann D, Flament J, Mandel JL, Koenig M, Dollfus H. Linkage to 18qter differentiates two clinically overlapping syndromes: congenital cataracts-facial dysmorphism-neuropathy (CCFDN) syndrome and Marinesco-Sjogren syndrome. J Med Genet. 2002 Nov;39(11):838-43.

PubMed ID: 
12414825

Congenital cataracts facial dysmorphism neuropathy syndrome, a novel complex genetic disease in Balkan Gypsies: clinical and electrophysiological observations

Tournev I, Kalaydjieva L, Youl B, Ishpekova B, Guergueltcheva V, Kamenov O, Katzarova M, Kamenov Z, Raicheva-Terzieva M, King RH, Romanski K, Petkov R, Schmarov A, Dimitrova G, Popova N, Uzunova M, Milanov S, Petrova J, Petkov Y, Kolarov G, Aneva L, Radeva O, Thomas PK. Congenital cataracts facial dysmorphism neuropathy syndrome, a novel complex genetic disease in Balkan Gypsies: clinical and electrophysiological observations. Ann Neurol. 1999 Jun;45(6):742-50.

PubMed ID: 
10360766

Galactose Epimerase Deficiency

Clinical Characteristics
Ocular Features: 

At least some patients have childhood cataracts which may be unilateral.  Direct assay of GALE activity in lenses shows a significant decrease in at least some patients.

Systemic Features: 

This rare disorder of galactose metabolism has an especially wide range of expression.  Some patients seem to have little or no clinical disease whereas others are severely affected.   Early cases were found to have epimerase deficiency only in circulating red blood cells while other cells seemed to have normal levels of the enzyme.  Some of these patients have virtually no symptoms.  Later, cases were found that resembled classic galactosemia (230400) in presentation and even responded to galactose restriction diets. Current thought favors the hypothesis that the same gene defect is responsible for the entire continuum of clinical disease.  Red blood cells have elevated levels of galactose-1-phosphate.

 

Genetics

This is an autosomal recessive disorder resulting from mutations in the GALE gene (1p36-p35.

Another disorder of galactose metabolism causing early onset cataracts is galactokinase deficiency (230200) caused by mutations in GALK1.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

A galactose-restricted diet is beneficial.  Since these patients are unable to utilize the endogenous pathway of synthesis for UDP-galactose they are dependent on exogenous galactose and therefore some galactose is required in the diet.

References
Article Title: 

Spondyloepiphyseal Dysplasia Congenita

Clinical Characteristics
Ocular Features: 

Patients characteristically have vitreous abnormalities described as veils or stands.  The central vitreous may undergo liquefaction and the peripheral vitreous sometimes creates traction on the retina.  High myopia with progression is common and a significant proportion of patients suffer detachments of the retina even in the absence of myopia.  Lattice degeneration is frequently seen.  Most patients have 20/50 or better vision.

Systemic Features: 

Dwarfism with kyphosis and a barrel chest are characteristic.  The vertebrae are often flattened and malformed and the neck is short.  Delayed ossification in the epiphyses and the os pubis is common.  The disorder can be evident at birth but the full syndrome may not be evident until 3 or 4 years of age.  Radiologic studies are important in making the diagnosis.

Genetics

This is generally considered an autosomal dominant disorder secondary to mutations in the COL2A1 gene impacting type II collagen.  This type of collagen is found primarily in cartilage and vitreous and a number of type II collagenopathy disorders are associated with vitreoretinopathy and joint disease of which Stickler syndrome type I (609508, 108300) is the most common.  Other disorders in this database caused by mutations in COL2A1 are: Kniest dysplasia (156550), Stickler syndromes type I (609508, 108300 ) and II (604841), vitreoretinopathy with epiphyseal dysplasia (120140), and spondyloepiphyseal dysplasia congenita (183900).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Cervical fusion is sometimes used when odontoid hypoplasia leads to hypermobility of the cervical vertebrae.  Retinal detachments, of course, need to be repaired.

References
Article Title: 

Marshall Syndrome

Clinical Characteristics
Ocular Features: 

Myopia is a common feature.  The globes appear prominent with evident hypertelorism, perhaps in part due to shallow orbits.  The vitreous is abnormally fluid.  The beaded vitreous pattern seen in Stickler syndrome type II (604841), with which Marshall syndrome is sometimes confused, is not seen in Marshall syndrome, nor is the same frequency of retinal detachments.  Congenital or juvenile cataracts were present in Marshall’s original family.

Systemic Features: 

The midface is flat with some features of the Pierre-Robin phenotype.  The nasal root is flat and the nares anteverted.  Patients tend to be short in stature and joints are often stiff.  Small iliac wings and a thickened calvarium can be seen radiologically together with other bone deformities.  Abnormal frontal sinuses and intracranial calcifications have also been reported.  Sensorineural hearing loss may be noted during the first year of life with age-related progression.  Osteoarthritis of the knees and lumbosacral spine begins in the 4th and 5th decades.  Features of anhidrotic ectodermal dysplasia such as hypohidrosis and hypotrichosis are present in some patients.  Individuals may have linear areas of hyperpigmentation on the trunk and limbs.

Genetics

The syndromal status of Marshall syndrome as a unique entity remains uncertain inasmuch as there are many overlapping clinical features with Stickler syndrome type II (604841) and both result from mutations in the COL11A1 gene (1p21).  Autosomal dominant inheritance is common to both although autosomal recessive inheritance has been proposed for a few families with presumed Marshall syndrome. Stickler syndrome type II (604841) and Marshall syndrome may be allelic or even the same disorder.

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available for this disorder beyond cataract removal.  Patients need to be monitored for retinal breaks and detachments.

References
Article Title: 

Kearns-Sayre Syndrome

Clinical Characteristics
Ocular Features: 

Ptosis and progressive ophthalmoplegia usually have their onset before the second decade of life.  Pigmentary retinopathy is common with a variable clinical pattern of simple salt-and-pepper pigmentation or pigmentary clumping resembling retinitis pigmentosa.

Systemic Features: 

Atrioventricular conduction defects including complete heart block, cardiomyopathy, short stature, elevated CSF protein, and ataxia are among the most frequent extraocular features seen.  Pharyngeal, facial, and skeletal muscle weakness seem to be common features.  Growth retardation, delayed sexual maturation, and mental deterioration occur in some patients. Older patients have a sensorineural hearing deficit as well.

EEG abnormalities are often present.  CT scans reveals a diffuse leukoencephalopathy as well as a variety of CNS abnormalities in the cerebellum and brain stem.  Muscle biopsies reveal 'ragged red' fibers.

This is a progressive disorder and many patients die in the third or fourth decades of life.

Genetics

Unlike many syndromes of external ophthalmoplegia with deletions in mitochondria, no nuclear DNA mutations have been associated with this disorder.  However, it is a clinically and genetically heterogeneous condition.  Exclusively maternal transmission consistent with mitochondrial disease has been observed in some familial cases.  Other familial cases suggest autosomal inheritance and in some the transmission pattern is consistent with autosomal recessive inheritance.  Many if not most cases occur sporadically.

Mitochondrial DNA defects in muscle and brain vary in size and location and even the proportion of normal to abnormal mitochondria among cells varies. This may account for some of the clinical heterogeneity.

Treatment
Treatment Options: 

Coenzyme Q(10) may decrease fatigue with improvement in eye muscle movement and a lessening in the degree of heart block.  Pacemakers may be necessary in some patients.  Exercise is recommended for patients with significant skeletal myopathy.

References
Article Title: 

Pages

Subscribe to RSS - sensorineural deafness