renal disease

Developmental Delay with Short Stature, Dysmorphic Features, and Sparse Hair

Clinical Characteristics
Ocular Features: 

Patients may have downward-slanting lid fissures, hypertelorism, epicanthal folds, and sparse eyebrows and eyelashes.

Systemic Features: 

Patients have scaphocephaly with or without craniosynostosis and facial dysmorphism with a depressed nasal bridge and micrognathia.  Short stature, sparse hair, and developmental delay are characteristic.  Hypoplastic toenails and dental anomalies are present.  Brain imaging may show Dandy-Walker malformations and cerebellar vermis hypoplasia.  The kidneys may have focal interstitial nephritis and there may be intermittent hematuria and proteinuria in the presence of otherwise normal renal function.  Cardiac septal defects have been noted.

Genetics

Homozygous mutations in the DPH1 gene (17p13.3) are responsible for this disorder.  Two families have been reported with this condition. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

Matching two cohorts validates DPH1 as a gene responsible for autosomal recessive intellectual disability with short stature, craniofacial, and ectodermal anomalies

Loucks CM, Parboosingh JS, Shaheen R, Bernier FP, McLeod DR, Seidahmed MZ, Puffenberger EG, Ober C, Hegele RA, Boycott KM, Alkuraya FS, Innes AM. Matching two independent cohorts validates DPH1 as a gene responsible for autosomal recessive intellectual disability with short stature, craniofacial, and ectodermal anomalies. Hum Mutat. 2015 Oct;36(10):1015-9.

PubMed ID: 
26220823

Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families

Alazami AM, Patel N, Shamseldin HE, Anazi S, Al-Dosari MS, Alzahrani F, Hijazi H, Alshammari M, Aldahmesh MA, Salih MA, Faqeih E, Alhashem A, Bashiri FA, Al-Owain M, Kentab AY, Sogaty S, Al Tala S, Temsah MH, Tulbah M, Aljelaify RF, Alshahwan SA, Seidahmed MZ, Alhadid AA, Aldhalaan H, AlQallaf F, Kurdi W, Alfadhel M, Babay Z, Alsogheer M, Kaya N, Al-Hassnan ZN, Abdel-Salam GM, Al-Sannaa N, Al Mutairi F, El Khashab HY, Bohlega S, Jia X, Nguyen HC, Hammami R, Adly N, Mohamed JY, Abdulwahab F, Ibrahim N, Naim EA, Al-Younes B, Meyer BF, Hashem M, Shaheen R, Xiong Y, Abouelhoda M, Aldeeri AA, Monies DM, Alkuraya FS. Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Rep. 2015 Jan 13;10(2):148-61.

PubMed ID: 
25558065

Fructose Intolerance

Clinical Characteristics
Ocular Features: 

Dense cataracts have been reported in the first decade of life in several patients.

Systemic Features: 

Abdominal pain, vomiting and hypoglycemia usually appears in infancy upon the introduction of fructose or sucrose to the diet.  Some infants have a more severe reaction to such sugars with lethargy, seizures and coma.  Older children and adults develop a protective aversion to fruits and sweets.  Chronic ingestion leads to liver cirrhosis, renal tubule damage, growth retardation, and even malnutrition.  Adults may also have hypoglycemia and metabolic acidosis when challenged with sucrose and fructose.

Genetics

This is an autosomal recessive disorder resulting from mutations in the ALDOB gene (9q31.1).  However, several heterozygous patients with symptoms have been reported and such individuals may be predisposed to hyperuricemia.  Multiple mutations have been identified in the ALDOB gene.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Treatment with a fructose restricted diet is highly effective but must be strictly enforced to allow normal growth.

References
Article Title: 

Hereditary fructose intolerance

Ali M, Rellos P, Cox TM. Hereditary fructose intolerance. J Med Genet. 1998 May;35(5):353-65. Review.

PubMed ID: 
9610797

Joubert Syndrome and Related Disorders

Clinical Characteristics
Ocular Features: 

Ocular findings like systemic features are highly variable both within and between families.  Vision can be normal but in other patients it is severely reduced to the range of 20/200.  The pupils may respond sluggishly or even paradoxically to light.  ERG recordings have been reported to be normal in some patients, but absent or reduced in others.  The fundus appearance is often normal but in other individuals the pigmentation is mottled, the retinal arterioles are attenuated, and the macula has a cellophane maculopathy.  Drusen and colobomas are sometimes seen in the optic nerve while occasional patients have typical chorioretinal colobomas.  The eyebrows are often highly arched.

The oculomotor system is frequently involved.  Apraxia to some degree is common with most patients having difficulty with smooth pursuit and saccadic movements.  Compensatory head thrusting is often observed.  A pendular nystagmus may be present while esophoria or esotropia is present in many patients.

Systemic Features: 

There is a great deal of clinical heterogeneity in this group of ciliary dyskinesias.  Developmental delays, cognitive impairment, truncal ataxia, breathing irregularities, and behavioral disorders are among the more common features.  Hyperactivity and aggressiveness combined with dependency require constant vigilance and care.  Postaxial polydactyly is a feature of some cases.  Hypotonia is evident at birth.  Liver failure and renal disease develop in many individuals.  Neuroimaging of the midbrain-hindbrain area reveals agenesis or some degree of dysgenesis of the vermis with the 'molar tooth sign' in the isthmus region considered to be a diagnostic sign.  The fourth ventricle is usually enlarged while the cerebellar hemispheres may be hypoplastic.

The facies features are said to be distinctive in older individuals.  The face appears long with frontal prominence due to bitemporal narrowing, the nasal bridge and tip are prominent, the jaw is prominent, the lower lip protrudes, and the corners of the mouth are turned down.

Genetics

This is a clinically and genetically heterogeneous group of disorders with many overlapping features.  Most disorders in this disease category, known as JSRD, are inherited in an autosomal recessive pattern.  Mutations in at least 34 genes have been identified.  One, OFD1 (300804), is located on the X chromosome (Xp22.2).

There are significant clinical similarities to Meckel syndrome (249000) and Smith-Lemli-Opitz syndrome (270400).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Treatment is mostly for specific symptoms such as respiratory distress, renal disease, speech and physical therapy, low vision, and hepatic failure.

References
Article Title: 

Joubert Syndrome: Ophthalmological Findings in Correlation with Genotype and Hepatorenal Disease in 99 Patients Prospectively Evaluated at a Single Center

Brooks BP, Zein WM, Thompson AH, Mokhtarzadeh M, Doherty DA, Parisi M, Glass IA, Malicdan MC, Vilboux T, Vemulapalli M, Mullikin JC, Gahl WA, Gunay-Aygun M. Joubert Syndrome: Ophthalmological Findings in Correlation with Genotype and Hepatorenal Disease in 99 Patients Prospectively Evaluated at a Single Center. Ophthalmology. 2018 Jul 25. pii: S0161-6420(18)30686-9. doi: 10.1016/j.ophtha.2018.05.026. [Epub ahead of print].

PubMed ID: 
30055837

Ophthalmological findings in Joubert syndrome

Sturm V, Leiba H, Menke MN, Valente EM, Poretti A, Landau K, Boltshauser E. Ophthalmological findings in Joubert syndrome. Eye (Lond). 2010 Feb;24(2):222-5.

PubMed ID: 
19461662

Papillorenal Syndrome

Clinical Characteristics
Ocular Features: 

Optic disc dysplasia is the ocular hallmark of this disease.  The nerve head often has the appearance of the ‘morning glory’ anomaly but some authors describe this as a coloboma or an optic pit.  Iris colobomas do not occur and only two patients have been reported with retinal colobomas.  There may be severe visual impairment due to the dysplastic optic nerves, but macular and retinal malformations may also contribute.  Other patients have near normal vision. The central retinal vessels are anomalous or even absent with the multiple smaller vessels exiting from the periphery of the disc.  The retina and fovea have been described as hypoplastic and have pigmentary changes. There is often a superonasal visual field defect.  Retrobulbar optic nerve cysts, high myopia, and posterior staphylomas have been noted in a few patients.  As in most autosomal dominant disorders, there is considerable clinical variability.

Systemic Features: 

Kidney dysfunction leading to chronic renal disease is the most common systemic abnormality in this condition.  It can occur at any age.  This often but not always is the result of pyelonephritis secondary to urogenital anomalies causing vesicoureteral reflux.  Other renal disease such as cystic renal hypoplasia may be present.  Other patients have only mild kidney malfunction with proteinuria and elevated serum creatinine.  A minority of patients has a mild high frequency hearing loss and rare individuals have CNS malformations.  Joint laxity and soft skin have also been described.

Genetics

This is an autosomal dominant disorder resulting from heterozygous mutations in the PAX2 gene (10q24.31). Nearly half of reported cases are sporadic secondary to new mutations.  Yet other well-studied families do not have mutations in the PAX2 gene suggesting genetic heterogeneity.

Optic nerve colobomas (120430) may also result from mutations in PAX6.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Kidney failure may require renal transplantation.  Vesicoureteral reflex has been treated with ureteral reimplantation.  Low vision aids may be beneficial in some patients.  Renal hypertension requires treatment.

References
Article Title: 

Update of PAX2 mutations in renal coloboma syndrome and establishment of a locus specific database

Bower M, Salomon R, Allanson J, Antignac C, Benedicenti F, Benetti E, Binenbaum G, Birk Jensen U, Cochat P, Decramer S, Dixon J, Drouin R, Falk M, Feret H, Gise R, Hunter A, Johnson K, Kumar R, Lavocat MP, Martin L, Morini?(r)re V, Mowat D, Murer L, Nguyen HT, Peretz-Amit G, Pierce E, Place E, Rodig N, Salerno A, Sastry S, Sato T, Sayer JA, Schaafsma GC, Shoemaker L, Stockton D, Tan WH, Tenconi R, Vanhille P, Vats A, Wang X, Warman B, Weleber RG, White SM, Wilson-Brackett C, Zand D, Eccles M, Schimmenti LA, Heidet L. Update of PAX2 mutations in renal coloboma syndrome and establishment of a locus specific database. Hum Mutat. 2011 Dec 29. [Epub ahead of print]

PubMed ID: 
22213154

Cockayne Syndrome, Type A

Clinical Characteristics
Ocular Features: 

A progressive pigmentary retinopathy of a salt-and-pepper type and optic atrophy are commonly seen.  Retinal vessels are often narrowed and older patients can have typical bone spicule formation.  Night blindness, strabismus, and nystagmus may be present as well.  Enophthalmos, hyperopia, poor pupillary responses, and cataracts have been observed.  The lens opacities may in the nucleus or in the posterior subcapsular area and are often present in early childhood.  The ERG is often flat but may show some scotopic and photopic responses which are more marked in older individuals.  Vision loss is progressive but is better than expected in some patients based on the retina and optic nerve appearance.  The cornea may have evidence of exposure keratitis as many patients sleep with their eyes incompletely closed.  Recurrent corneal erosions have been reported in some patients.

The complete ocular phenotype and its natural history have been difficult to document due to the aggressive nature of this disease.

Ocular histopathology in a single patient (type unknown) revealed widespread pigment dispersion, degeneration of all retinal layers as well as thinning of the choriocapillaris and gliosis of the optic nerve.  Excessive lipofuscin deposition in the RPE was seen.

Systemic Features: 

Slow somatic growth and neural development are usually noted in the first few years of life.  Young children may acquire some independence and motor skills but progressive neurologic deterioration is relentless with loss of milestones and eventual development of mental retardation or dementia.  Patients often appear small and cachectic, with a 'progeroid' appearance.  The hair is thin and dry, and the skin is UV-sensitive but the risk of skin cancer is not increased.  Sensorineural hearing loss and dental caries are common.  Skeletal features include microcephaly, kyphosis, flexion contractures of the joints, large hands and feet, and disproportionately long arms and legs.  Perivascular calcium deposits are often seen, particularly in various brain structures while the brain is small with diffuse atrophy and patchy demyelination of white matter.  Peripheral neuropathy is characterized by slow conduction velocities.  Poor thermal regulation is often a feature. 

Type A is considered the classic form of CS.  Neurological deterioration and atherosclerotic disease usually lead to death early in the 2nd decade of life but some patients have lived into their 20s.  

Genetics

There is a great deal of clinical heterogeneity in Cockayne syndrome.  Type A results from homozygous or heterozygous mutations in ERCC8 (5q12).  CS type B (133540), is caused by mutations in ERCC6, and has an earlier onset with more rapidly progressive disease.  Both mutations impact excision-repair cross-complementing proteins important for DNA repair during replication.

Type III (216411) is poorly defined but seems to have a considerably later onset and milder disease.  The mutation in type III is unknown. 

Some patients have combined phenotypical features of Cockayne syndrome (CS) and xeroderma pigmentosum (XP) known as the XP-CS complex (216400).  Defective DNA repair resulting from mutations in nucleotide excision-repair cross-complementing or ERCC genes is common to both disorders.  Two complementation groups have been identified in CS and seven in XP.  XP patients with CS features fall into only three (B, D, G) of the XP groups.  XP-CS patients have extreme skin photosensitivity and a huge increase in skin cancers of all types.  They also have an increase in nervous system neoplasms. 

There may be considerable overlap in clinical features and rate of disease progression among all types.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No specific treatment is available for Cockayne syndrome.  Supportive care for specific health problems, such as physical therapy for joint contractures, is important. 

Justification of cataract extraction should be made on a case by case basis.  Lagophthalmos requires that corneal lubrication be meticulously maintained.

References
Article Title: 

The Cockayne Syndrome Natural History (CoSyNH) study: clinical findings in 102 individuals and recommendations for care

Wilson BT, Stark Z, Sutton RE, Danda S, Ekbote AV, Elsayed SM, Gibson L, Goodship JA, Jackson AP, Keng WT, King MD, McCann E, Motojima T, Murray JE, Omata T, Pilz D, Pope K, Sugita K, White SM, Wilson IJ. The Cockayne Syndrome Natural History (CoSyNH) study: clinical findings in 102 individuals and recommendations for care. Genet Med. 2015 Jul 23. doi: 10.1038/gim.2015.110. [Epub ahead of print].

PubMed ID: 
26204423

Ocular findings in Cockayne syndrome

Traboulsi EI, De Becker I, Maumenee IH. Ocular findings in Cockayne syndrome. Am J Ophthalmol. 1992 Nov 15;114(5):579-83.

PubMed ID: 
1443019

Cockayne syndrome and xeroderma pigmentosum

Rapin I, Lindenbaum Y, Dickson DW, Kraemer KH, Robbins JH. Cockayne syndrome and xeroderma pigmentosum. Neurology. 2000 Nov 28;55(10):1442-9. Review. PubMed PMID:

PubMed ID: 
11185579

Lymphedema-Distichiasis Syndrome

Clinical Characteristics
Ocular Features: 

This form of lymphedema is associated with distichiasis, often with trichiasis and significant corneal damage in about 75% of patients.  Onset of symptoms may occur at any age but usually during childhood or adolescence.  Photophobia, epiphora, corneal erosions, ptosis, and partial ectropion of the lids may also be seen.  The secondary symptoms of trichiasis are not always present and slit lamp examination of the lashes may be necessary to see the duplicated row of lashes.  The lashes often grow out of the Meibomian orifices.

Systemic Features: 

Cardiac defects, cleft palate, and spinal extradural cysts occur in some families.  Type II diabetes and interstitial nephritis have been reported.  The lymph channels in the lower extremities may be normal or increased in number, especially below the knee where pitting edema is most often first seen, even as early as the first decade of life.  Lymphedema occurs earlier in males and secondary cellulitis is a greater risk. It is usually confined to the lower extremities and is often asymmetrical.  Not all patients have the complete syndrome, while lymphedema and distichiasis can be inherited as individual disorders without being associated.  Males are more likely to have the complete syndrome.

Several families with this syndrome secondary to mutations in the FOXC2 have been reported to have renal anomalies ranging from kidney agenesis to malrotation. 

Genetics

This disorder is inherited in an autosomal dominant pattern and several families have been found to have mutations in the FOXC2 gene on chromosome 16 (16q24.3).  A Chinese family with an affected father and two affected offspring (one male and one female) has been reported with distichiasis but no lymphedema.  A premature stop codon was found in the FOXC2 transcription gene (16q24.1) in these family members suggesting that they may have had the lymphedema-distichiasis syndrome instead.

Blatt distichiasis is a unique disorder without the lymphedema (126300). 

Double rows of eyelashes are also part of the blepharocheilodontic syndrome (119580).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Electrolysis of individual misdirected lashes can be applied.  Prompt treatment of lid cellulitis is important. Surgical repair of scarred lid tissue can restore cosmesis lid function and improve cosmesis.

References
Article Title: 

Renal anomalies and lymphedema distichiasis syndrome

Jones GE, Richmond AK, Navti O, Mousa HA, Abbs S, Thompson E, Mansour S, Vasudevan PC. Renal anomalies and lymphedema distichiasis syndrome. A rare association? Am J Med Genet A. 2017 May;173(8):2251-2256.

PubMed ID: 
28544699

Hereditary lymphedema and distichiasis

Kolin T, Johns KJ, Wadlington WB, Butler MG, Sunalp MA, Wright KW. Hereditary lymphedema and distichiasis. Arch Ophthalmol. 1991 Jul;109(7):980-1.

PubMed ID: 
2064580

LCAT Deficiency

Clinical Characteristics
Ocular Features: 

Norum disease and fish-eye disease are discussed as a single entry in this database because they are both caused by mutations in the same gene (LCAT).  Most patients are diagnosed as young adults.  Corneal opacities are may be the only clinically significant abnormality in fish-eye disease whereas anemia and renal complications are more significant in Norum disease.   Lipid deposition in the cornea is responsible for the corneal opacities and may cause significant reduction in vision.  However, opacities are concentrated near the limbus.  The cornea in fish-eye disease has twice the normal amount of cholesterol and vacuoles in the stroma and Bowman's.  Vision ranges from 20/40 to hand motions, with onset in the first two decades and progression throughout life.  The opacities form a mosaic pattern of small dot-like grey-white-yellow opacities.  The fish-eye designation comes from the corneal clouding resembling boiled fish eyes.

Systemic Features: 

Lecithin:cholesterol acyltransferase (LCAT) is a disorder of lipoprotein metabolism resulting in reduced plasma cholesterol esterifying activity.  The mutation leading to Norum disease causes normocytic hemolytic anemia with significant proteinuria secondary to renal failure.  However, patients with fish-eye disease do not have anemia or renal disease.  Red blood cells may have increased cholesterol content and foam cells are found in bone marrow and in the glomerular tufts of the kidney.  Peripheral neuropathy is sometimes present.   Circulating cholesterol, triglycerides and phospholipids are elevated whereas high-density lipoprotein (HDL), apoA-I and apoA-II are reduced.  However, premature atherosclerosis is not a feature contrary to expectations.  

LCAT deficiency does not have hepatomegaly, splenomegaly or enlarged lymph glands as found in another disorder of lipoprotein metabolism with low HDL levels known as Tangier disease (205400).

Genetics

Complete LCAT deficiency (Norum) disease and partial deficiency (fish-eye disease) are autosomal recessive disorders secondary to mutations in the LCAT gene located on chromosome 16 (16q22.1).  The mutation is located in codon 123 in fish-eye disease and in codon 4 of Norum disease.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Severe visual impairment secondary to corneal clouding is an indication for corneal transplantation.  Renal failure may require renal transplantation.
 

References
Article Title: 

Markedly accelerated catabolism of apolipoprotein A-II (ApoA-II) and high density lipoproteins containing ApoA-II in classic lecithin:cholesterol acyltransferase deficiency and fish-eye disease.

Rader, D. J.; Ikewaki, K.; Duverger, N.; Schmidt, H.; Pritchard, H.; Frohlich, J.; Clerc, M.; Dumon, M.-F.; Fairwell, T.; Zech, L.; Santamarina-Fojo, S.; Brewer, H. B., Jr. : Markedly accelerated catabolism of apolipoprotein A-II (ApoA-II) and high density lipoproteins containing ApoA-II in classic lecithin:cholesterol acyltransferase deficiency and fish-eye disease. J. Clin. Invest. 93: 321-330, 1994.

PubMed ID: 
8282802

A molecular defect causing fish eye disease: an amino acid exchange in lecithin-cholesterol acyltransferase (LCAT) leads to the selective loss of alpha-LCAT activity.

Funke, H.; von Eckardstein, A.; Pritchard, P. H.; Albers, J. J.; Kastelein, J. J. P.; Droste, C.; Assmann, G. : A molecular defect causing fish eye disease: an amino acid exchange in lecithin-cholesterol acyltransferase (LCAT) leads to the selective loss of alpha-LCAT activity.  Proc. Nat. Acad. Sci. 88: 4855-4859, 1991.

PubMed ID: 
2052566
Subscribe to RSS - renal disease