nystagmus

Albinism, Oculocutaneous, Type IV

Clinical Characteristics
Ocular Features: 

The ocular manifestations in type IV oculocutaneous albinism are similar to those of other types.  Nystagmus, strabismus, misrouting of neuronal axons, and foveal hypoplasia are prominent features although there is some clinical heterogeneity among patients.  Nystagmus may not be present at birth but is almost always evident by 3-4 months of age.  The iris may be pale blue or tan and does not generally darken with age.  Poor stereopsis is common.  Vision is stable after childhood and usually in the range of 20/100-20/400. 

Systemic Features: 

Hair color is generally intermediate between white and brown but many patients have only white hair and in others the hair is brown.  Little darkening occurs as patients become older.  The skin is often white or creamy yellow. 

Genetics

This type of oculocutaneous albinism is one of the more common types found among Japanese and maybe Chinese individuals although it has also been reported in German and Turkish individuals.  This is a rare autosomal recessive form of albinism caused by mutations in the MATP (SLC45A2) gene located at 5p13.3. 

A single Japanese family with 16 affected members has been reported in which the transmission pattern was consistent with autosomal dominant inheritance. Heterozygous mutations in the SLC45A2 gene segregated appropriately.

Other types include OCA1 (203100, 606952 ), OCA2 (203200 ), OAC3 (203290), OAC5 (615179), and OCA6 (113750)..

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

There is no treatment for the hypopigmentation.  Low vision aids and tinted lenses may help some patients.  Exposure to the sun should be limited. 

References
Article Title: 

Oculocutaneous albinism

Gronskov K, Ek J, Brondum-Nielsen K. Oculocutaneous albinism. Orphanet J Rare Dis. 2007 Nov 2;2:43. Review.

PubMed ID: 
17980020

Albinism, Oculocutaneous, Type II

Clinical Characteristics
Ocular Features: 

The iris and retina lack normal pigmentation and translucency of the iris can be demonstrated.  Anomalous decussation of neuronal axons in the chiasm and foveal hypoplasia result in decreased visual acuity.  Vision loss into the range of 20/100-20/200 does not progress after early childhood but is sometimes as good as 20/30.   Nystagmus is often present from about 3-4 months of age although it is less severe than in type I oculocutaneous albinism (203100, 606952).  The iris may darken to some extent with age.  Strabismus has been reported.  Significant refractive errors are often present and stereopsis is reduced.  The VEP responses are altered and can be used to document abnormal chiasmal decussation. 

Systemic Features: 

Melanin pigment is reduced in the skin and hair as well as the eyes.  Individuals at birth may be misdiagnosed as OCA type I but it is common for pigmentation to increase in older individuals resulting in yellow or reddish-blond hair and the appearance of freckles and nevi.  The skin may be creamy-white but this is often not as striking as in OCAI.  It is possible for tanning to take place in some patients.  This condition in Africans or African Americans is sometimes called brown oculocutaneous albinism (BOCA).  There is an increased risk of skin cancer of all types. 

Genetics

Type II is the most common type of oculocutaneous albinism and is especially prevalent among individuals of African heritage and in several Native American populations.  It is an autosomal recessive condition caused by homozygous 2.7 kb deletions in the OCA2 gene (15q24.3-q12).  Heterozygotes have normal pigmentation. 

Oculocutaneous albinism type I (203100, 606952) is a separate disorder with many similar features caused by mutations in the TYR gene.  Other types of autosomal recessive albinism are OCA3 (203290 ), and OCA4 (606574). 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available for the hypopigmentation.  Low vision aids can be helpful. Significant refractive errors should, of course, be corrected and dark lenses may be helpful during outdoor activities. The skin should be protected from excessive sun exposure. 

References
Article Title: 

Vision in albinism

Summers CG. Vision in albinism. Trans Am Ophthalmol Soc. 1996;94:1095-155.

PubMed ID: 
8981720

Oculocutaneous albinism

Gronskov K, Ek J, Brondum-Nielsen K. Oculocutaneous albinism. Orphanet J Rare Dis. 2007 Nov 2;2:43. Review.

PubMed ID: 
17980020

Jalili Syndrome

Clinical Characteristics
Ocular Features: 

Symptoms of photophobia and reduced vision are present in the first years of life.  Pendular nystagmus is common.  Color vision is defective and is characterized by some as a form of achromatopsia, perhaps better described as dyschromatopsia.  Reduced night vision is noted by the end of the first decade of life.  OCT reveals reduced foveal and retinal thickness.  The macula appears atrophic with pigment mottling and the peripheral retina can resemble retinitis pigmentosa with bone spicule pigment changes.  Retinal vessels may be narrow.  The ERG shows reduced responses in both photopic and scotopic recordings.  This form of rod-cone dystrophy is progressive with central acuity decreasing with age. 

Systemic Features: 

The teeth are abnormally shaped and discolored from birth.  The amelogenesis imperfecta consists of hypoplasia and hypomineralization that is present in both deciduous and permanent teeth.  Tooth enamel is mineralized only to 50% of normal and is similar to that of dentine. 

Genetics

This is an autosomal recessive condition caused by mutations in the CNNM4 gene at 2q11.2. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available for the ocular condition but red-tinted lenses and low vision aids may be helpful.  The teeth require dental repair. 

References
Article Title: 

Mutations in CNNM4 cause Jalili syndrome, consisting of autosomal-recessive cone-rod dystrophy and amelogenesis imperfecta

Parry DA, Mighell AJ, El-Sayed W, Shore RC, Jalili IK, Dollfus H, Bloch-Zupan A, Carlos R, Carr IM, Downey LM, Blain KM, Mansfield DC, Shahrabi M, Heidari M, Aref P, Abbasi M, Michaelides M, Moore AT, Kirkham J, Inglehearn CF. Mutations in CNNM4 cause Jalili syndrome, consisting of autosomal-recessive cone-rod dystrophy and amelogenesis imperfecta. Am J Hum Genet. 2009 Feb;84(2):266-73.

PubMed ID: 
19200525

Hermansky-Pudlak Syndrome

Clinical Characteristics
Ocular Features: 

Oculocutaneous hypopigmentation is common to all types of HPS.  The ocular manifestations are similar to that of other types of albinism.  Iris transillumination defects, nystagmus, and strabismus are common features.   Visual acuity is usually stable in the range of 20/40-20/300 and often accompanied by photophobia.  Foveal hypoplasia and fundus hypopigmentation are present similar to that found in other hypopigmentation disorders.  The same is true of excessive decussation of retinal neuron axons at the chiasm.  Many patients have significant refractive errors. 

Systemic Features: 

In addition to decreased hair, ocular, and skin pigmentation, HPS patients suffer from bleeding diathesis, platelet deficiencies, and accumulation of ceroid material in lysosomes.  Pigment can be found in large amounts in reticuloendothelial cells and in the walls of small blood vessels.  Some of the same features are found in Chediak-Higashi  syndrome (214500) which, however, has additional qualitative changes in leukocytes.   HPS2 differs from other forms of HPS in having immunodeficiency and congenital neutropenia.  Some patients, especially those with HPS1 and HPS4 mutations, have restrictive lung disease secondary to pulmonary fibrosis often causing symptoms in the third and fourth decades of life.  Others have granulomatous colitis, kidney failure, and cardiomyopathy.  Solar skin damage is a risk with actinic keratosis, nevi, lentigines and basal cell carcinoma seen in many patients.

Bleeding time is prolonged secondary to an impairment of the normal aggregation response of platelets.  Easy bruising, epistaxis, prolonged bleeding during menstruation, after tooth extraction, and after minor surgical procedures are often reported.  Platelets lack the normal number of 'dense bodies'.  Coagulation factor activity and platelet counts are normal.

The amount of hair and skin pigmentation is highly variable.  Some patients are so lightly pigmented that they are misdiagnosed as having tyrosinase-negative albinism while others have yellow to brown hair with irides blue to hazel.  Some darkening of hair is common. 

Genetics

This is an autosomal recessive genetically heterogeneous condition resulting from mutations in at least 12 loci: HPS1 (203300) at 10q23.1-q23.2, AP3B1 causing HPS2 (608233) at 5q14.1, and AP3D1 (617050) at 19p13.3 causing HPS 10, whereas in types HPS3 (606118) at 3q24, HPS4 (606682) at 22q11.2-q12.2, HPS5 (607521) at 11p15-p13, HPS6 (607522) at 10q24.32 the mutations themselves have not been characterized.  HPS7 is caused by mutations in the DTNBP1 gene (607145) located at locus 6p22.3 and HPS8 by mutations in the BLOC1S3 gene (609762) at 19q13.  The nature of the mutations is variable and often unique to the population in which they are found. 

Chediak-Higashi  syndrome (214500) is a somewhat similar disorder but with leukocyte abnormalities and results from a different gene mutation.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

It has been suggested that any patients with pigmentation disorders should be asked about bleeding problems to rule out HPS.  A hematologic consultation should be obtained if necessary, especially before elective surgery, to avoid bleeding complications through the use of appropriate preoperative measures.   Low vision aids can be helpful.  The skin should be protected from sunburn.  Lifelong surveillance is required for ocular and systemic problems.  The use of aspirin and indomethacin should be avoided. 

References
Article Title: 

Mutations in AP3D1 associated with immunodeficiency and seizures define a new type of Hermansky-Pudlak syndrome

Ammann S, Schulz A, Krageloh-Mann I, Dieckmann NM, Niethammer K, Fuchs S, Eckl KM, Plank R, Werner R, Altmuller J, Thiele H, Nurnberg P, Bank J, Strauss A, von Bernuth H, Zur Stadt U, Grieve S, Griffiths GM, Lehmberg K, Hennies HC, Ehl S. Mutations in AP3D1 associated with immunodeficiency and seizures define a new type of Hermansky-Pudlak syndrome. Blood. 2016 Feb 25;127(8):997-1006.

PubMed ID: 
26744459

Optic Nerve Hypoplasia, Bilateral

Clinical Characteristics
Ocular Features: 

The hallmark of this syndrome is bilateral optic nerve dysplasia including aplasia and hypoplasia. It may occur in isolation or as part of other syndromes, especially in those having abnormalities of the central nervous system.  All components of the nerve head are abnormally small including the entire disc area, the cup, and the neuroretinal rim. It has been reported that retinal vein tortuosity is predictive of patients with endocrinopathies.  Retinal arteries often appear straight and narrow but this may not be seen in all cases.  Visual acuity ranges from 20/50 to NLP but usually 20/200 or better.  Many patients have nystagmus and strabismus.

This disorder shares many characteristics with septooptic dysplasia (182230) but the optic nerve anomalies are usually unilateral in the latter disorder and the disc rim often has a double margin.  Mutations in different genes are responsible for the two disorders. 

Systemic Features: 

Pituitary dysfunction and endocrinopathy may lead to life-threatening illness caused by adrenal crisis or hypoglycemia.  An absent or abnormal septum pellucidum is present in 49% of patients and 64% have a hypothalamic-pituitary axis abnormality.  Among those with an abnormal septum pellucidum, 56% have some kind of endocrinopathy. Other midline brain defects and cerebral anomalies have also been reported.

 

Genetics

Bilateral optic nerve hypoplasia is inherited in an autosomal dominant pattern based on the few families reported.  Mutations in the PAX6 (11q13) gene are responsible.

A somewhat similar disease with extensive CNS and endocrinological abnormalities is septooptic dysplasia (182230) caused by mutations in the HESX1 gene. 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

There is no treatment for the optic nerve hypoplasia but individuals need to be monitored for endocrinopathy and treated appropriately.  Low vision aids and sometimes mobility training can be helpful for some patients. 

References
Article Title: 

Endocrine status in patients with optic nerve hypoplasia: relationship to midline central nervous system abnormalities and appearance of the hypothalamic-pituitary axis on magnetic resonance imaging

Birkebaek NH, Patel L, Wright NB, Grigg JR, Sinha S, Hall CM, Price DA, Lloyd IC, Clayton PE. Endocrine status in patients with optic nerve hypoplasia: relationship to midline central nervous system abnormalities and appearance of the hypothalamic-pituitary axis on magnetic resonance imaging. J Clin Endocrinol Metab. 2003 Nov;88(11):5281-6.

PubMed ID: 
14602752

Pierson Syndrome

Clinical Characteristics
Ocular Features: 

Microcoria is the most consistent ocular feature but is not present in some families.  It is congenital and sometimes seen with iris hypoplasia.  Glaucoma and lens opacities (including posterior lenticonus sometimes) are present in one-fourth of patients.  Corneal size varies with some patients having apparent macrocornea which can lead to the mistaken diagnosis of buphthalmos.  Pigment mottling and clumping is common in the retina and the ERG can show changes characteristic of cone-rod dystrophy.  Retinal thinning is often present as well.  Non-rhegmatogenous retinal detachments occur in 24% of patients and optic atrophy is seen in some individuals.  There is considerable interocular, intrafamilial, and interfamilial variability in these signs. 

Systemic Features: 

The primary and most consistent systemic problem is progressive renal disease. Congenital nephrotic syndrome with proteinuria, hypoalbuminemia and hypertension is characteristic.  Renal failure eventually occurs although the rate of progression varies. Most patients require a renal transplant for end-stage kidney disease in the first decade of life.  Kidney histology shows glomerulosclerosis, peritubular scarring, and diffuse mesangial sclerosis.  Hypotonia and muscle weakness are sometimes present and congenital myasthenia has been reported.  Severe global psychomotor retardation is common and many infants never achieve normal milestones. 

Genetics

This is an autosomal recessive disorder resulting from homozygous mutations in the LAMB2 gene located at 3p21.  The normal gene encodes laminin beta-2 that is strongly expressed in intraocular muscles which may explain the hypoplasia of ciliary and pupillary muscles in Pierson syndrome.  Mutations in this gene are often associated with nephronophthisis but ocular abnormalities are not always present. 

Microcoria is also a feature of the autosomal dominant ocular condition known as congenital microcoria (156600).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Kidney replacement can restore renal function.  Glaucoma, cataracts, and retinal detachments require the usual treatment but patient selection is important due to the neurological deficits.  Lifelong monitoring is essential. 

References
Article Title: 

Ocular findings in a case of Pierson syndrome with a novel mutation in laminin ß2 gene

Arima M, Tsukamoto S, Akiyama R, Nishiyama K, Kohno RI, Tachibana T, Hayashida A, Murayama M, Hisatomi T, Nozu K, Iijima K, Ohga S, Sonoda KH. Ocular findings in a case of Pierson syndrome with a novel mutation in laminin ss2 gene. J AAPOS. 2018 Aug 16. pii: S1091-8531(18)30497-X. doi: 10.1016/j.jaapos.2018.03.016. [Epub ahead of print].

PubMed ID: 
30120985

Ophthalmological aspects of Pierson syndrome

Bredrup C, Matejas V, Barrow M, Bl?deghov?deg K, Bockenhauer D, Fowler DJ, Gregson RM, Maruniak-Chudek I, Medeira A, Mendon?ssa EL, Kagan M, Koenig J, Krastel H, Kroes HY, Saggar A, Sawyer T, Schittkowski M, Swietli?Nski J, Thompson D, VanDeVoorde RG, Wittebol-Post D, Woodruff G, Zurowska A, Hennekam RC, Zenker M, Russell-Eggitt I. Ophthalmological aspects of Pierson syndrome. Am J Ophthalmol. 2008 Oct;146(4):602-611.

PubMed ID: 
18672223

Albinism, Oculocutaneous, Type I

Clinical Characteristics
Ocular Features: 

Oculocutaneous albinism is a genetically and clinically heterogeneous condition.  It is congenital in origin and the combination of foveal hypoplasia and anomalous decussation of neuronal axons in the chiasm results in a permanent reduction of vision in the range of 20/50-20/200.  Most individuals have nystagmus, photophobia, and strabismus.  The iris usually is light blue and transmits light.  The retina lacks pigmentation as well.  The ocular features are similar in types IA and IB.  The iris may darken with age in type IB (606952 ). 

Systemic Features: 

There are generally no systemic abnormalities in these pigmentation disorders with the exception of sensorineural hearing loss in some, and, of course, complete absence of pigment in skin and hair.  Anomalous decussation of axons in the auditory system has been demonstrated in such cases and otic pigment is lacking in albinos.  The skin contains amelanic melanocytes but these cells contain granules similar to those of normal cells.   Some patients with residual tyrosinase activity (type 1B, 606952 ) develop some pigmentation of hair and skin, especially in cooler areas of the body such as the extremities. 

Genetics

This type of oculocutaneous albinism is caused by mutations in the TYR gene (11q14-q21) and inherited in an autosomal recessive pattern. 

Type IA (OCA1A) has no demonstrable tyrosinase activity while type IB (OCA1B, 606952) has a reduction in enzyme activity.  Yet other patients with mutations in TYR have a variant called 'yellow albinism' in which tyrosinase activity resembles that found in type IB.  To explain the difference in skin color, it has been suggested that an individual's background ethnicity may impact the pigmentation phenotype.

Other types also transmitted as autosomal recessive conditions are OCA2 (203200), OCA3 (203290), AND OCA4 (606574). 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

There is no treatment for the basic disease but low vision aids may be helpful for some patients.  Dark glasses provide comfort for photophobic individuals.  The skin should be protected against sunburn. 

References
Article Title: 

A new hypothesis of OCA1B

Chiang PW, Drautz JM, Tsai AC, Spector E, Clericuzio CL. A new hypothesis of OCA1B. Am J Med Genet A. 2008 Nov 15;146A(22):2968-70.

PubMed ID: 
18925668

Oculocutaneous albinism

Gronskov K, Ek J, Brondum-Nielsen K. Oculocutaneous albinism. Orphanet J Rare Dis. 2007 Nov 2;2:43. Review.

PubMed ID: 
17980020

Foveal Hypoplasia 1

Clinical Characteristics
Ocular Features: 

This is a poorly defined syndrome with features overlapping aniridia, hereditary keratitis, ocular albinism, and iris anomalies as in Peters anomaly.  However, presenile cataracts seem to be unique to this disorder.  The foveal hypoplasia may occur without other anomalies although the fundus is usually lightly pigmented.  As expected, acuity is subnormal from birth, in the range of 20/50, and dyschromatopsia may be present.  Some patients have nystagmus.  Weak iris transillumination has been reported and a small limbal pannus may be present. Lens opacities may become visually significant in the third to fourth decade of life.  OCT has shown abnormal foveal thickness with multiple inner retinal layers somewhat similar to the situation in oculocutaneous albinism (203100) and it has been suggested that 'foveal dysplasia' is a better description than 'foveal hypoplasia'. 

Systemic Features: 

No systemic disease is present. 

Genetics

This disorder is associated with mutations in the PAX6 gene (11p13) and inherited as an autosomal dominant.

The protein product of the PAX6 gene is a transcription factor that attaches to DNA and regulates the expression of other genes.  PAX6 plays a major role primarily in development of the eye and central nervous system but evidence suggests it is also active postnatally.  Hundreds of mutations have been found in disorders such as hereditary keratitis, aniridia, Peters anomaly, hypoplasia and colobomas of the optic nerve.  This database contains 8 conditions in which mutations in PAX6 seem to be responsible, including syndromal conditions such as Stromme and Gillespie syndromes in which there may be cognitive disabilities. 

True isolated foveal hypoplasia without lens or corneal disease does exist as well but this condition (FVH2) is not well defined.  Homozygous mutations in SLC38A8 have been found to cosegregate with this form of foveal hypoplasia among families of Jewish Indian ancestry.  Hypopigmentation is not a feature of isolated foveal hypoplasia secondary to such mutations but misrouting of optic nerve axons may be present.  Nystagmus and reduced vision but no anterior segment abnormalities were present.

With the widespread utilization of OCT measurements, we have learned that underdevelopment of the fovea can be a feature of numerous ocular disorders (more than 20 in this database).  In most conditions, the foveal dysplasia is part of a disease complex as in foveal hypoplasia with anterior segment dysgenesis (609218).

 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Cataract surgery is indicated when lens opacities become visually significant. 

References
Article Title: 

Recessive Mutations in SLC38A8 Cause Foveal Hypoplasia and Optic Nerve Misrouting without Albinism

Poulter JA, Al-Araimi M, Conte I, van Genderen MM, Sheridan E, Carr IM, Parry DA, Shires M, Carrella S, Bradbury J, Khan K, Lakeman P, Sergouniotis PI, Webster AR, Moore AT, Pal B, Mohamed MD, Venkataramana A, Ramprasad V, Shetty R, Saktivel M, Kumaramanickavel G, Tan A, Mackey DA, Hewitt AW, Banfi S, Ali M, Inglehearn CF, Toomes C. Recessive Mutations in SLC38A8 Cause Foveal Hypoplasia and Optic Nerve Misrouting without Albinism. Am J Hum Genet. 2013 Dec 5;93(6):1143-50.

PubMed ID: 
24290379

Cone-Rod Dystrophies, AD and AR

Clinical Characteristics
Ocular Features: 

Cone-rod dystrophies (CRD) are a group of pigmentary retinopathies that have early and important changes in the macula.  Cone dysfunction occurs first and is often followed by rod photoreceptor degeneration.

Common initial symptoms are decreased visual acuity, dyschromatopsia, and photophobia which are often noted in the first decade of life.  Night blindness occurs later as the disease progresses.  A fine nystagmus is also common. Visual field defects include an initial central scotoma with patchy peripheral defects followed by larger defects in later stages.  The fundus exam can be normal initially, but is followed by pigmentary bone spicule changes, attenuation of retinal vessels, waxy pallor of the optic disc and retinal atrophy.  A ring maculopathy surrounding the fovea is usually evident.  The ERG first reveals photopic defects and later scotopic changes.  Fluorescein angiography and fundus autofluorescence generally reveal atrophic retinopathy.  Many patients eventually become legally blind as the disease progresses and some end up with no light perception.

Cone-rod dystrophies are a group of disorders separate from rod-cone dystrophies where the primary defect is in the rod photoreceptors with typical pigmentary changes in the peripheral retina. The progression of vision loss is generally slower in rod-cone dystrophies. Cone dystrophies comprise another group of disorders with exclusive cone involvement in which the macula often has a normal appearance in association with loss of central acuity.

Systemic Features: 

No systemic disease is associated with simple cone-rod dystrophies.  See below for syndromal disorders with cone-rod dystrophy. 

Genetics

Non-syndromic cone-rod dystrophies can be either autosomal dominant, autosomal recessive or X-linked and are caused by defects in at least 17 different genes.  This database entry discusses only the autosomal disorders.  See X-linked cone-rod dystrophies in a separate entry.

Cone-rod dystrophies inherited in an autosomal dominant pattern include:

CORD2 (120970) is caused by mutations in CRX at 19q13.3, a homeobox gene responsible for the development of photoreceptor cells.  These are responsible for 5-10% of autosomal dominant cone-rod dystrophy cases (602225) and can also cause one type (LCA7) of Leber congenital amaurosis (602225) and a late-onset retinitis pigmentosa phenotype.

CORD5 (600977) is caused by mutations in the PITPNM3 gene at 17p13.1. 

CORD6 (601777) is caused by a mutation in GUCY2D in a similar location on chromosome 17. 

CORD7 (603649) is caused by mutations in RIMS1 at 6q12-q13.

Mutations in AIPL1 (604392), located in the same region, usually causes a form of Leber congenital amaurosis (LCA4) as well as retinitis pigmentosa (604393) but has also been reported in a cone-rod pigmentary retinopathy.

CORD11 (610381) is caused by mutations in RAXL1 (19p13.3).

CORD12 (612657) results from mutations in the PROM1 gene (4p15.3).

Mutations in the gene GUCA1A on chromosome 6p21.1 causes CORD14 (602093).

An as yet unclassified autosomal dominant type of cone-rod dystrophy has recently been localized to 10q26.

Cone-rod dystrophies inherited in an autosomal recessive pattern include:

Mutations in ABCA4 at 1p21-p13 is responsible for 30-60% of cases of autosomal recessive CRD (CORD3; 604116) .  ABCA4 is also known to cause autosomal recessive Stargardt disease.

CORD8 (605549) has been found in a single consanguineous family and the mutation localized to 1q12-q24.

ADAM9 (602713) at 8p11 and 8p11.23 contains mutations that have been shown to cause autosomal recessive CORD9 in several consanguineous families.

Mutations in RPGRIP1 (14q11) are responsible for CORD13 (608194).

The CDHR1 gene (10q23.1) contains mutations that cause CORD15 (613660).

Other autosomal CRD disorders are CORD1 (600624) described in a single individual and possibly those due to mutations in HRG4 at 17q11.2 (604011).

Syndromal cone-rod dystrophies:

Cone-rod dystrophy may also be associated with other syndromes, such as Bardet-Biedl syndrome (209900), or spinocerebellar ataxia Type 7 (164500), autosomal recessive amelogenesis imperfecta with cone-rod dystrophy or Jalili syndrome (217080), neurofibromatosis type I (162200), and hypotrichosis with juvenile macular dystrophy and alopecia (601553).  Metabolic disorders associated with cone-rod dystrophy include Refsum disease with phytanic acid abnormality (266500) and Alport syndrome (301050). 

Cone-Rod Dystrophy 19 (615860) has been associated with male infertility as the result of mutations in TTLL5 affecting both photoreceptors and sperm.

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

There is no treatment for these dystrophies but red-tinted lenses provide comfort and may sometimes improve acuity to some extent.  Low vision aids can be helpful. 

References
Article Title: 

A novel locus for autosomal dominant cone-rod dystrophy maps to chromosome 10q

Kamenarova K, Cherninkova S, Romero Dur?degn M, Prescott D, Vald?(c)s S?degnchez ML, Mitev V, Kremensky I, Kaneva R, Bhattacharya SS, Tournev I, Chakarova C. A novel locus for autosomal dominant cone-rod dystrophy maps to chromosome 10q. Eur J Hum Genet. 2012 Aug 29. doi: 10.1038/ejhg.2012.158. [Epub ahead of print]

PubMed ID: 
22929024

Cone rod dystrophies

Hamel CP. Cone rod dystrophies. Orphanet J Rare Dis. 2007 Feb 1;2:7. Review.

PubMed ID: 
17270046

Gillespie Syndrome

Clinical Characteristics
Ocular Features: 

Bilateral aniridia, partial or complete, is the ocular characteristic of Gillespie syndrome.  The iris may be relatively intact but immobile leading to the description in some patients of "dilated and fixed pupils", or congenital mydriasis.  The pupillary margin may be scalloped with iris strands to the lens.  The pupillary sphincter is sometimes absent and the mesodermal surface missing.  The fovea sometimes appears hypoplastic and some patients have decreased visual acuity.  Strabismus and ptosis are often present.  There may also be retinal hypopigmentation.  Cataract, glaucoma, and corneal opacities are not present. 

Systemic Features: 

Most patients have some degree of developmental delay ranging from difficulties with fine motor tasks to frank mental retardation.  Many have a hand tremor, some degree of hypotonia, and learning difficulties.  MRI imaging often shows cerebellar and sometimes cerebral hypoplasia. 

Genetics

This is an autosomal dominant disorder usually due to a heterozygous mutation in the PAX6 gene (11p13).  However, some patients with typical features do not have a mutation in this gene suggesting that there is genetic heterogeneity.  Some patients without point mutations nevertheless have defects in adjacent DNA suggesting a positional effect.  The possibility of autosomal recessive inheritance in some families with parental consanguinity cannot be ruled out.  The PAX6 gene plays an important role in iris development as it is also mutant in simple aniridia (106210) and in Peters anomaly (604229).

Mutations in the ITPR1 gene have also been identified in Gillespie syndrome.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment is available.

References
Article Title: 

Pages

Subscribe to RSS - nystagmus