night blindness

Cone-Rod Dystrophies, X-Linked

Clinical Characteristics
Ocular Features: 

Three X-linked forms of progressive cone-rod dystrophies each with mutations in different genes have been identified.  Central vision is often lost in the second or third decades of life but photophobia is usually noted before vision loss.  Cones are primarily involved but rod degeneration occurs over time.  The ERG reveals defective photopic responses early followed by a decrease in rod responses.   All three types are rare disorders affecting primarily males with symptoms of decreased acuity, photophobia, loss of color vision, and myopia.  The color vision defect early is incomplete but progressive cone degeneration eventually leads to achromatopsia.    Peripheral visual fields are usually full until late in the disease when constriction and nightblindness are evident.  The retina may have a tapetal-like sheen.  RPE changes in the macula often give it a granular appearance and there may be a bull's-eye configuration.   Fine nystagmus may be present as well.  The optic nerve often has some pallor beginning temporally.  Carrier females can have some diminished acuity, myopia, RPE changes, and even photophobia but normal color vision and ERG responses at least among younger individuals.

There is considerable variation in the clinical signs and symptoms in the X-linked cone-rod dystrophies among both affected males and heterozygous females.  Visual acuity varies widely and is to some extent age dependent.  Vision can be normal into the fourth and fifth decades but may reach the count fingers level after that. 

Systemic Features: 

None.

Genetics

Mutations in at least 3 genes on the X chromosome cause X-linked cone-rod dystrophy.

CORDX1 (304020) is caused by mutations in an alternative exon 15 (ORG15) of the RPGR gene (Xp11.4) which is also mutant in several forms of X-linked retinitis pigmentosa (300455, 300029).  These disorders are sometimes considered examples of X-linked ocular disease resulting from a primary ciliary dyskinesia (244400).

CORDX2 (300085) is caused by mutations in an unidentified gene at Xq27.  A single family has been reported.

CORDX3 (300476) results from mutations in CACNA1F.  Mutations in the same gene also cause a form of congenital stationary night blindness, CSNB2A (300071).  The latter, however, is a stationary disorder with significant nightblindness and mild dyschromatopsia, often with an adult onset, and is associated with high myopia. Aland Island Eye Disease (300600) is another allelic disorder.   

Pedigree: 
X-linked dominant, father affected
X-linked dominant, mother affected
X-linked recessive, carrier mother
X-linked recessive, father affected
Treatment
Treatment Options: 

There is no treatment for these dystrophies but red-tinted lenses provide comfort and may sometimes improve acuity to some extent.  Low vision aids can be helpful. 

References
Article Title: 

Usher Syndrome Type II

Clinical Characteristics
Ocular Features: 

Retinitis pigmentosa is clinically similar to that of nonsyndromal RP and produces symptoms of nightblindness by adolescence.  The ERG is severely reduced and visual fields are constricted.  Rods seem to be more severely affected than cones.  A loss of thickness in the outer nuclear layer in USH2C and USH2A types has been described.  The fundus often contains patches of hyperfluorescence which become larger and often coalesce in older patients.  The retinal disease is progressive but more slowly than in type I.  Eventually by the 4th to 5th decades the visual field is constricted to 5-10 degrees.  It can result in blindness.  Cataracts are common and some patients have cystic changes in the macula.

Systemic Features: 

The hearing deficit in type II can be described as hearing loss rather than deafness as found in type I.  Usually high frequencies are impacted more severely than lower frequencies producing a characteristic 'sloping' audiogram.  The hearing loss is present at birth and progressive, at least in some individuals.  Speech usually develops.  Vestibular dysfunction is not a feature of type II Usher syndrome.  The mental changes observed in type I do not occur in type II.

Genetics

Like other forms of Usher syndrome, type II is inherited in an autosomal recessive pattern.  Like type I, it is genetically heterogeneous and mutations in at least 4 genes seem to be responsible.  Three have been identified: type IIA (USH2A; 276901) results from mutations in the USH2A gene on chromosome 4 (1q41), type IIC (USH2D; 605472) from mutations in GPR98 (5q14), and type IID (USH2D; 611383) is caused by mutations in the DFNB31 gene (9q32-q34).  Type IIB (USH2B) results from mutations in a locus mapped to 3p24.2-p23 but the gene has not been identified.  Clinical features are sufficiently similar so that these are discussed here as a single entity.

This is the most common of the three types of Usher syndrome.  Type I Usher syndrome (276900) results from mutations in at least 7 genes and type III (276902) is caused by a mutations in the CLRN1 gene.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Hearing aids can be helpful and speech therapy may be highly beneficial for the development of speech.  Cochlear implants have been suggested for older persons who have the more severe hearing loss.  Auditory testing should be done shortly after birth and the hearing loss monitored periodically.

An investigational drug (QRX-411) developed by ProQR has been approved as an orphan drug by the FDA and the EMA for patients with the USH2A mutation. 

References
Article Title: 

Kinetics of visual field loss in Usher syndrome Type II

Iannaccone A, Kritchevsky SB, Ciccarelli ML, Tedesco SA, Macaluso C, Kimberling WJ, Somes GW. Kinetics of visual field loss in Usher syndrome Type II. Invest Ophthalmol Vis Sci. 2004 Mar;45(3):784-92.

PubMed ID: 
14985291

Usher Syndrome Type I

Clinical Characteristics
Ocular Features: 

The fundus dystrophy of retinitis pigmentosa in Usher syndrome is indistinguishable from isolated retinitis pigmentosa.   Night blindness begins by about 10 years of age and the ERG by that time is often markedly diminished or absent.  Patches of hyperfluorescence are seen in younger individuals and these enlarge and coalesce with age.  Tunnel vision occurs early as the peripheral visual field is constricted to 5-10 degrees by midlife.  The retinal disease is progressive and blindness may be the final result.

Systemic Features: 

Type I Usher syndrome is characterized by profound hearing impairment beginning at birth, vestibular dysfunction, and unintelligible speech in addition to retinitis pigmentosa.  Vestibular areflexia is virtually complete and constitutes a defining feature.  Ataxic gait disturbances are common secondary to labyrinthine dysfunction and many children do not walk until 18-24 months of age.  Sitting alone may also be delayed.  Sperm motility is abnormal which is likely the basis for reduced fertility in male patients.  An abnormal exoneme morphology from ciliated progenitors is likely the common basis for these clinical findings.  MRI imaging has found a significant decrease in intracranial volume and brain size.  About 1 in 4 children have behavioral problems or psychosocial difficulties.

Genetics

Type I Usher syndrome is an autosomal recessive genetically heterogeneous disorder as mutations in at least 8 genes produce a similar disease.  These are: MYO7A (276900) at 11q13.5 causing USH1B (USH1A is now considered to be the same), USH1C at 11p15.1 causing USH1C (276904), CDH23 at 10q21-q22, causing USH1D (601067), PCDH15 at 10q21.1 causing USH1F (602083), and USH1G at 17q24-25 causing USH1G (606943).  Mutations in as yet unnamed genes in loci at 21q21 (USH1E; 602097), 10p11.21-q21.1 (USH1K), and 15q22-q23 (USH1H; 612632) may also cause this type I phenotype. They are discussed here as a single entity designated type I since the clinical features of each are indistinguishable.'

A varant of USH1C resulting from homozygous deletions in 11p15-p14, known as homozygous 11p15-p14 deletion syndrome, has the additional feature of severe hyperinsulinemia due to the involvement of ABCC8 and KCNJ11 genes (606528).

Clinical differences have led to the categorization of three types of Usher syndrome:  type I described here, type II (276901) caused by mutations in at least 4 genes, and type III (276902) caused by mutations in CLRN1.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

At-risk infants should have hearing evaluations as soon as possible after birth.  Assistive hearing devices are of little benefit.  Unless cochlear implants are placed in young children, speech may not develop.  Extra precautions during physical activities such as swimming, bicycling, and night-time driving are highly recommended. Speech therapy and low vision aids can be beneficial.

References
Article Title: 

Targeted exon sequencing in Usher syndrome type I

Bujakowska KM, Consugar MB, Place E, Harper S, Lena J, Taub DG, White J, Navarro-Gomez D, Weigel-DiFranco C, Farkas MH, Gai X, Berson EL, Pierce EA. Targeted exon sequencing in Usher syndrome type I. Invest Ophthalmol Vis Sci. 2014 Dec 2.  [Epub ahead of print].

PubMed ID: 
25468891

Heterogeneity in Phenotype of Usher-Congenital Hyperinsulinism Syndrome: Hearing Loss, Retinitis Pigmentosa, and Hyperinsulinemic Hypoglycemia Ranging from Severe to Mild with Conversion to Diabetes

Al Mutair AN, Brusgaard K, Bin-Abbas B, Hussain K, Felimban N, Al Shaikh A, Christesen HT. Heterogeneity in Phenotype of Usher-Congenital Hyperinsulinism Syndrome: Hearing Loss, Retinitis Pigmentosa, and Hyperinsulinemic Hypoglycemia Ranging from Severe to Mild with Conversion to Diabetes. Diabetes Care. 2012 Nov 12. [Epub ahead of print].

PubMed ID: 
23150283

Peroxisome Biogenesis Disorder 1B (neonatal adrenoleukodystrophy)

Clinical Characteristics
Ocular Features: 

This peroxisomal disorder presents in the first year of life with both systemic and ocular features.  Night blindness is the major ocular feature and at least some have optic atrophy similar to the adult form.  Central acuity is reduced secondary to macular degeneration.  A pigmentary retinopathy is frequently present and often follows the appearance of whitish retinal flecks in the midperipheray.  Nystagmus and cataracts are common features.  Reduction or absence of ERG responses can be used in young children to document the retinopathy.  Blindness and deafness commonly occur in childhood.

Systemic Features: 

This disorder is classified as a leukodystrophy, or disease of white matter of the brain, associated with the breakdown of phytanic acid.  Ataxia and features of motor neuron disease are evident early.  Hepatomegaly and jaundice may also be early diagnostic features as bile acid metabolism is defective.  Infant hypotonia is often seen.  Nonspecific facial dysmorphism has been reported.  The ears are low-set and epicanthal folds are present.  The teeth are abnormally large and often have yellowish discoloration.  Postural unsteadiness is evident when patients begin walking.  Diagnosis can be suspected from elevated serum phytanic and pipecolic acid (in 20% of patients) or by demonstration of decreased phytanic acid oxidation in cultured fibroblasts.  Other biochemical abnormalities such as hypocholesterolemia, and elevated very long chain fatty acids and trihydroxycholestanoic acid are usually present.  Anosmia, developmental delays, and mental retardation are nearly universal features.  Early mortality in infancy or childhood is common.

Genetics

This is a genetically heterogeneous disorder of peroxisome biogenesis caused by mutations in at least three genes, PEX1 (7q21-q22), PEX2 (8q21.1), and PEX6 (22q11-21).  Each is inherited in an autosomal recessive pattern.  The mechanism of disease is different from the classic or adult Refsum disorder (266500) and some have debated whether the term ‘infantile Refsum disease’ is appropriate.

This disorder shares some clinical features with other peroxisomal disorders such as Zellweger syndrome (214100) and rhizomelic chondrodysplasia punctata (215100).  Zellweger syndrome (214100), neonatal adrenoleukodystrophy and infantile Refsum disease (601539) are now considered to be peroxisomal biogenesis or Zellweger spectrum disorders.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No effective treatment is known.

References
Article Title: 

Refsum Disease, Adult

Clinical Characteristics
Ocular Features: 

A retinitis pigmentosa-like retinopathy is the major ocular manifestation of this disease.  There is typical night blindness and visual field constriction.   Rod ERG responses are usually subnormal.  However, central acuity is also reduced due to a degenerative maculopathy.   Cataracts and optic atrophy are common.  The macula may undergo progressive degeneration and optic atrophy is not uncommon.  Some patients have defective pupillary responses.

Systemic Features: 

Onset of symptoms is usually late in the first decade and sometimes into the third decade.  There is usually a polyneuropathy with impaired motor reflexes and paresis in the limbs.  A progressive sensorineural hearing loss occurs in many patients.  Sensory deficits also occur.  Some have ataxia and skin changes of ichthyosis.  Anosmia is a near universal feature.  Heart failure may occur and cardiac abnormalities such as conduction defects can occur.  A variety of skeletal abnormalities such as pes cavus, short fourth metatarsals, and evidence of epiphyseal dysplasia have been reported.  There is considerable clinical heterogeneity even within families.

Phytanic acid oxidase activity as measured in fibroblasts is often low while serum phytanic acid is increased.  The cerebrospinal fluid contains increased protein but no increase in cells.

Genetics

This disorder results from mutations in the PHYH (PAHX) gene (10pter-p11.2) encoding phytanoyl-CoA hydroxylase, or, more rarely in PEX7 (6q22-q24) encoding peroxin-7 resulting in an uncommon condition (10% of cases) sometimes called adult Refsum disease-2. 

Mutations in the latter gene also cause rhizomelic chondrodysplasia punctata type 1 (215100) which does not have all of the neurological features or the retinopathy.

There is also so-called infantile form of Refsum disease (266510).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

A diet low in phytanic acid can lead to improvement in the neurologic symptoms such as the ataxia and polyneuropathy but must be instituted in early stages of the disease.  This approach may not be as beneficial for the visual or auditory symptoms.

References
Article Title: 

Flecked Retina Syndromes

Clinical Characteristics
Ocular Features: 

There exist a considerable number of disorders often classified under the heading of 'flecked retina' syndrome.  Prior to the modern genomic period, distinctions among them were based on the clinical picture, functional abnormalities, and electrophysiological studies.  The nosology is becoming clearer as more individuals are genotyped and we can expect further discrimination of these disorders in the near future.

White or yellow discrete dots are found throughout the fundus.  These are most dense in the midperiphery RPE and the macula is generally not involved.  This is most common in patients with fundus albipunctatus who have a nonprogressive disease.  Stationary night blindness is the predominant symptom.  However, patients with mutations in RDH5 may have more serious cone involvement and progressive macular disease.  Visual acuity varies from near normal to severe loss.  Photopic ERGs may be normal but only low scotopic responses can be recorded in such patients.  Cone dysfunction is more severe in older patients.

Systemic Features: 

No systemic disease is associated with these syndromes.

Genetics

These disorders are sometimes grouped into the category of 'flecked retina disease'.

Autosomal dominant inheritance is typical for fundus albipunctatus (136880) resulting from mutations in the RDS (PRPH2) gene (6p21.1-cen).

Autosomal recessive fundus albipunctatus (136880) is caused by mutations in RDH5 (12q13-q14) and sometimes in RLBP1 (15q26.1).

Retinitis punctata albescens (136880) and fundus albipunctatus (136880) may both be caused by mutations in RLBP1 (15q26.1).  In a consanguineous family in which younger individuals (aged 3-20 years) had signs of fundus albipunctatis, older individuals in the fourth and fifth decades of life had features of retinitis punctata albescens (136880).  Homozygous mutations in RLBP1 were found in all individuals.  Homozygous mutations in the same gene are also responsible for Bothnia type retinal dystrophy (607475) and for the Newfoundland type of retinal dystrophy (607476).

Familial Benign Fleck Retina (228980) is characterized by a normal ERG and normal vision. The macula is spared from the white/yellow flecks located behind retinal vessels. Autofluorescence is present and the fluorescein angiogram shows irregular hypofluorescence.  Nothing is known about the mutation but the clinical condition is inherited in an autosomal recessive pattern.

Some group Stargardt disease (248200), fleck retina of Kandori (228990),  juvenile retinoschisis (312700), and familial benign fleck retina (228980) as well into the category of 'flecked retina disease'.

Other disorders in which retinal flecks may be seen are: spastic paraplegia 15 (270700), hyperoxaluria (259900), Alport syndrome (301050), Bietti-crystalline-corneoretinal-dystrophy (210370 ), Sjogren-Larsson syndrome (270200), pantothenate kinase-associated neurodegeneration (234200), Leber congenital amaurosis (204000), and Bardet-Biedl syndrome (209900),

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

Low vision aids may be useful when macular disease is present.  A recent report describes improvement in peripheral fields and rod function following administration of high-dose oral 9-cis-beta-carotene.

References
Article Title: 

Flecked-retina syndromes

Walia S, Fishman GA, Kapur R. Flecked-retina syndromes. Ophthalmic Genet. 2009 Jun;30(2):69-75..

PubMed ID: 
19373677

Novel mutations in the cellular retinaldehyde-binding protein gene (RLBP1) associated with retinitis punctata albescens: evidence of interfamilial genetic heterogeneity and fundus changes in heterozygotes

Fishman GA, Roberts MF, Derlacki DJ, Grimsby JL, Yamamoto H, Sharon D, Nishiguchi KM, Dryja TP. Novel mutations in the cellular retinaldehyde-binding protein gene (RLBP1) associated with retinitis punctata albescens: evidence of interfamilial genetic heterogeneity and fundus changes in heterozygotes. Arch Ophthalmol. 2004 Jan;122(1):70-5.

PubMed ID: 
14718298

Benign fleck retina

Isaacs TW, McAllister IL, Wade MS. Benign fleck retina. Br J Ophthalmol. 1996 Mar;80(3):267-8. PubMed PMID: 8703867

PubMed ID: 
8703867

Oguchi Disease, Type 2

Clinical Characteristics
Ocular Features: 

The distinctive feature of Oguchi disease is the peculiar and distinctive discoloration of the fundus under various light conditions, known as the Mizuo phenomenon.  Typically, the fundus assumes a golden or gray-white coloration under light adapted conditions but this disappears during acute dark adaptation and only reappears after prolonged time spent in darkness.  Rod dark adaptation is markedly delayed while that of cones is normal.  Single flash cone and 30Hz flicker responses are markedly reduced.  Visual acuity, visual fields and color vision are all normal.   A- and b-waves on single flash ERG are decreased or absent under lighted conditions but increase after prolonged dark adaptation.  Night blindness is present from birth without progression.

Systemic Features: 

No systemic abnormalities are associated with Oguchi disease.

Genetics

Oguchi type 2 disease is an autosomal recessive condition caused by mutations in the rhodopsin kinase (GRK1) gene (13q34) whose product works with arrestin in turning off rhodopsin after light activation as part of the dark adaptation mechanism.

Oguchi type 1 disease (258100) is a similar form of congenital stationary nightblindness caused by mutations in the SAG gene.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available.

References
Article Title: 

Oguchi Disease, Type 1

Clinical Characteristics
Ocular Features: 

The distinctive feature of Oguchi disease is the peculiar and distinctive discoloration of the fundus under various light conditions, known as the Mizuo phenomenon.  Typically, the fundus assumes a golden or gray-white coloration under light adapted conditions but this disappears during acute dark adaptation and only reappears after prolonged time spent in darkness.  Rod dark adaptation is markedly delayed while that of cones is normal.  Visual acuity, visual fields and color vision are all normal.   A- and b-waves on single flash ERG are decreased or absent under lighted conditions but increase after prolonged dark adaptation.  Night blindness is present from birth without progression.

Systemic Features: 

No systemic abnormalities are associated with Oguchi disease.

Genetics

Oguchi type 1 disease is an autosomal recessive condition caused by mutations in the arrestin (SAG) gene (2q37.1) whose product is an intrinsic photoreceptor protein that participates in the recovery phase of light transduction.

Oguchi disease type 2 (613411), a similar form of congenital stationary night blindness, is caused by mutations in the GRK1 gene.  Genotyping is required to distinguish between the two types.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available.

References
Article Title: 

Bietti Crystalline Corneoretinal Dystrophy

Clinical Characteristics
Ocular Features: 

The retina contains refractile glistening intraretinal crystals at all levels and choroidal vessels are said to be sclerosed.  The RPE atrophies and often forms pigment clumps.  The yellow-white crystals may be seen in the peripheral cornea and in the limbus.  Symptoms of night blindness and early vision loss begin about the third decade.  Night blindness is progressive as is the narrowing of the visual fields but this is highly variable between patients.  The visual field may show paracentral scotomas at some stage.  Central acuity can be normal until late in the disease when it becomes markedly impaired. Legal blindness can occur by the 5th decade of life. 

The ERG may show lack of rod and cone responses late in the disease and color vision may be lost.  However, the ffERG and mfERGs show decreases in amplitude of scotopic and photopic responses in all patients, even younger ones.  The EOG becomes abnormal in late stages.  The degree of involvement may be asymmetrical.  Complex lipid inclusions can be seen histologically in choroidal, conjunctival and skin fibroblasts, as well as in keratocytes and lymphocytes.

Crystalline deposits have been detected mostly in the proximal portions of RPE cells adjacent to degenerated retinal  areas.  Most common are circular hyperrefractive structures in the outer nuclear layer adjacent to areas of degeneration.  Some patients have cystoid macular edema. Others in late stages have fundus changes that resemble choroideremia.

Systemic Features: 

No other organ disease has been reported.

Genetics

This is an autosomal recessive disorder caused by mutations in the CYP4V2 gene (4q35.1) involved in fatty acid metabolism.

A homozygous CYP4V2 mutation has also been reported in patients with a choroideremia-like clinical phenotype.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment beyond low vision aids is available.

References
Article Title: 

Bietti crystalline corneoretinal dystrophy is caused by mutations in the novel gene CYP4V2

Li A, Jiao X, Munier FL, Schorderet DF, Yao W, Iwata F, Hayakawa M, Kanai A, Shy Chen M, Alan Lewis R, Heckenlively J, Weleber RG, Traboulsi EI, Zhang Q, Xiao X, Kaiser-Kupfer M, Sergeev YV, Hejtmancik JF. Bietti crystalline corneoretinal dystrophy is caused by mutations in the novel gene CYP4V2. Am J Hum Genet. 2004 May;74(5):817-26. Epub 2004 Mar 23.

PubMed ID: 
15042513

Night Blindness, Congenital Stationary, CSNBAD3

Clinical Characteristics
Ocular Features: 

Night blindness is a feature of many pigmentary and other retinal disorders, most of which are progressive.  However, there is also a group of genetically heterogeneous disorders, with generally stable scotopic defects and without RPE changes, known as congenital stationary night blindness (CSNB).  At least 10 mutant genes are responsible with phenotypes so similar that genotyping is usually necessary to distinguish them.  All are caused by defects in visual signal transduction within rod photoreceptors or in defective photoreceptor-to-bipolar cell signaling with common ERG findings of reduced or absent b-waves and generally normal a-waves.  However, the photopic ERG can be abnormal to some degree as well and visual acuity may be subnormal.  In the pregenomic era, subtleties of ERG responses were frequently used in an attempt to distinguish different forms of CSNB.  Genotyping now enables classification with unprecedented precision.

Congenital stationary night blindness disorders are primarily rod dystrophies presenting early with symptoms of nightblindness and relative sparing of central vision.  Nystagmus and photophobia are usually not features.  Dyschromatopsia and loss of central acuity can develop later as the cones eventually become dysfunctional as well but these symptoms are much less severe than those seen in cone-rod dystrophies.  The amount of pigmentary retinopathy is highly variable.

This disorder (CSNBAD3), one of three autosomal dominant CSNB conditions, is known primarily from  a single large family in Southern France.  All affected individuals descended from Jean Nougaret from which the eponym is derived.  The published pedigree by F. Cunier in 1838 is probably the first illustrating autosomal dominant inheritance of a human disease.  Rod a-waves are completely absent suggesting complete lack of rod function.  Night vision in dim conditions was reduced but not with bright backgrounds.  Daytime vision is normal as is color vision.  Rare patients have peripheral pigmentary changes with visual field restriction.

Systemic Features: 

No systemic disease is associated with congenital stationary night blindness.

Genetics

CSNBAD3, or type AD3, is one of three congenital nightblindness disorders with autosomal dominant inheritance.  It results from mutations in the GNAT1 gene (3p21) gene encoding a subunit of rod transducin which couples rhodopsin as part of the phototransduction cascade.

A consanguineous Pakistani family with 4 affected children in a pedigree suggestive of autosomal recessive inheritance has been reported (CSNB1G).  All individuals with congenital nightblindness were homozygous for a missense mutation in GNAT1 while unaffected persons were heterozygous (616389).

Other autosomal dominant CSNB disorders are: CSNBAD2 (163500) and CSNBAD1 (610445).  Three CSNB disorders are transmitted in an autosomal recessive pattern and two as X-linked recessives.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment beyond correction of the refractive error is available but tinted lenses are sometimes used to enhance vision.

References
Article Title: 

Pages

Subscribe to RSS - night blindness