posteriorly rotated ears

Al Kaissi Syndrome

Clinical Characteristics
Ocular Features: 

Reported facial dysmorphism features include periocular anomalies of ptosis, hypertelorism, down-slanting lid fissures, and epicanthal folds.  

Systemic Features: 

The phenotype is somewhat variable.  Intrauterine and postnatal growth retardation with hypotonia are common.   Moderate to severe intellectual disability is usually present and speech may be severely delayed.  The forehead is narrow, the nasal tip is broad, the nasal bridge is depressed, and the ears are low-set and posteriorly rotated.   Small hands and sometimes joint laxity are commonly present.  Cervical spine abnormalities including clefting, improper fusion, and segmentation anomalies are common.

Brain MRI may be normal but a small corpus callosum was present in some patients.

Genetics

Homozygous mutations in the CDK10 gene (16q24.3) are responsible for this disorder.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

CDK10 Mutations in Humans and Mice Cause Severe Growth Retardation, Spine Malformations, and Developmental Delays

Windpassinger C, Piard J, Bonnard C, Alfadhel M, Lim S, Bisteau X, Blouin S, Ali NB, Ng AYJ, Lu H, Tohari S, Talib SZA, van Hul N, Caldez MJ, Van Maldergem L, Yigit G, Kayserili H, Youssef SA, Coppola V, de Bruin A, Tessarollo L, Choi H, Rupp V, Roetzer K, Roschger P, Klaushofer K, Altmuller J, Roy S, Venkatesh B, Ganger R, Grill F, Ben Chehida F, Wollnik B, Altunoglu U, Al Kaissi A, Reversade B, Kaldis P. CDK10 Mutations in Humans and Mice Cause Severe Growth Retardation, Spine Malformations, and Developmental Delays. Am J Hum Genet. 2017 Sep 7;101(3):391-403.

PubMed ID: 
28886341

Gabriele-de Vries Syndrome

Clinical Characteristics
Ocular Features: 

A number of nondiagnostic signs occur in the periocular structures as part of the general facial dysmorphism.  There is a general fullness to the periocular area, most evident in the upper eyelids.  The lid fissures slant downward and the eyebrows are sparse.  Strabismus is often present.  Ptosis has been noted in a few individuals.

Systemic Features: 

Systemic signs are inconsistent and highly variable.  Intrauterine growth is usually below average.  Feeding problems are evident from birth.  The facial dysmorphology is highlighted by a high, broad forehead and accentuated by micrognathia and midface hypoplasia.  The ears are posteriorly rotated.  General development is delayed and milestones, if achieved, are delayed.  Behavioral problems can be manifest as anxiety and some individuals have features of the autism spectrum.  Abnormal movements such as tremor and dystonia are sometimes present.

Brain imaging may reveal delayed myelination, frontal gliosis, white matter abnormalities, and enlarged ventricles.

Genetics

Heterozygous mutations in the YY1 gene (14q32) have been identified in this condition.  The gene is a transcription factor that acts both as a repressor and an activator in specific circumstances.  Virtually all cases occur de novo.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No effective generalized treatment has been reported.

References
Article Title: 

YY1 Haploinsufficiency Causes an Intellectual Disability Syndrome Featuring Transcriptional and Chromatin Dysfunction

Gabriele M, Vulto-van Silfhout AT, Germain PL, Vitriolo A, Kumar R, Douglas E, Haan E, Kosaki K, Takenouchi T, Rauch A, Steindl K, Frengen E, Misceo D, Pedurupillay CRJ, Stromme P, Rosenfeld JA, Shao Y, Craigen WJ, Schaaf CP, Rodriguez-Buritica D, Farach L, Friedman J, Thulin P, McLean SD, Nugent KM, Morton J, Nicholl J, Andrieux J, Stray-Pedersen A, Chambon P, Patrier S, Lynch SA, Kjaergaard S, Torring PM, Brasch-Andersen C, Ronan A, van Haeringen A, Anderson PJ, Powis Z, Brunner HG, Pfundt R, Schuurs-Hoeijmakers JHM, van Bon BWM, Lelieveld S, Gilissen C, Nillesen WM, Vissers LELM, Gecz J, Koolen DA, Testa G, de Vries BBA. YY1 Haploinsufficiency Causes an Intellectual Disability Syndrome Featuring Transcriptional and Chromatin Dysfunction. Am J Hum Genet. 2017 Jun 1;100(6):907-925.

PubMed ID: 
28575647

Neurodevelopmental Disorder with Progressive Microcephaly, Spasticity, and Brain Anomalies

Clinical Characteristics
Ocular Features: 

 Examined patients have optic atrophy with nystagmus and roving eye movements.

Systemic Features: 

There are extensive and, in most cases, progressive CNS abnormalities resulting in severe neurodevelopmental deficits.  Infants at birth have progressive truncal hypotonia and limb spasticity.  Motor deficits result in little spontaneous movement, resulting in poor sucking, and respiratory difficulties.  Language does not develop and there is profound mental retardation. Progressive microcephaly is a characteristic finding.  There are often extrapyramidal signs such as rigidity and dystonic posturing.

Dysmorphic features include a short nose, high-arched palate, low-set and posteriorly rotated ears, micrognathia, postaxial polydactyly, hirsutism, pectus carinatum, contractures of large joints, and hyperextensibility of small joints.

Brain imaging shows a progressive leukoencephalopathy, cerebral and cerebellar atrophy, and delayed myelination.  The corpus callosum is often thin and the ventricles appear enlarged.  The lifespan is generally short with death occurring in infancy or early childhood.

Genetics

This autosomal recessive disorder results from homozygous mutations in the PLAA gene (9p21). 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

PLAA Mutations Cause a Lethal Infantile Epileptic Encephalopathy by Disrupting Ubiquitin-Mediated Endolysosomal Degradation of Synaptic Proteins

Hall EA, Nahorski MS, Murray LM, Shaheen R, Perkins E, Dissanayake KN, Kristaryanto Y, Jones RA, Vogt J, Rivagorda M, Handley MT, Mali GR, Quidwai T, Soares DC, Keighren MA, McKie L, Mort RL, Gammoh N, Garcia-Munoz A, Davey T, Vermeren M, Walsh D, Budd P, Aligianis IA, Faqeih E, Quigley AJ, Jackson IJ, Kulathu Y, Jackson M, Ribchester RR, von Kriegsheim A, Alkuraya FS, Woods CG, Maher ER, Mill P. PLAA Mutations Cause a Lethal Infantile Epileptic Encephalopathy by Disrupting Ubiquitin-Mediated Endolysosomal Degradation of Synaptic Proteins. Am J Hum Genet. 2017 May 4;100(5):706-724.

PubMed ID: 
28413018

Phospholipase A2-activating protein is associated with a novel form of leukoencephalopathy

Falik Zaccai TC, Savitzki D, Zivony-Elboum Y, Vilboux T, Fitts EC, Shoval Y, Kalfon L, Samra N, Keren Z, Gross B, Chasnyk N, Straussberg R, Mullikin JC, Teer JK, Geiger D, Kornitzer D, Bitterman-Deutsch O, Samson AO, Wakamiya M, Peterson JW, Kirtley ML, Pinchuk IV, Baze WB, Gahl WA, Kleta R, Anikster Y, Chopra AK. Phospholipase A2-activating protein is associated with a novel form of leukoencephalopathy. Brain. 2017 Feb;140(Pt 2):370-386.

PubMed ID: 
28007986

Congenital Heart Defects, Dysmorphic Facies, and Intellectual Developmental Disorder

Clinical Characteristics
Ocular Features: 

The dysmorphic facial features primarily involve the periocular structures.  These include hypertelorism, ptosis, epicanthal folds, strabismus and upslanted palpebral fissures.

Systemic Features: 

Septal defects involving both the atrium and the ventricle are consistently present.  Pulmonary valve abnormalities are present in some patients.

Posteriorly rotated pinnae and a small mouth with a thin upper lip have been observed.  Camptodactyly and clinodactyly are common.  Some patients have mild microcephaly.

Global developmental delay is a consistent feature manifest as delays in walking and speech and eventual intellectual disability.  Feeding difficulties are common.  Hypotonia and hypermobile joints are often noted.  Imaging of the brain may reveal agenesis of the corpus callosum, incomplete formation of the inferior vermis, and leukomalacia of periventricular tissue.

Genetics

Heterozygous mutations have been identified in the CDK13 gene (7p14.1) in seven unrelated individuals.  Heterozygous parents may not have the full phenotype.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment is available for the generalized condition.

References
Article Title: 

Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing

Sifrim A, Hitz MP, Wilsdon A, Breckpot J, Turki SH, Thienpont B, McRae J, Fitzgerald TW, Singh T, Swaminathan GJ, Prigmore E, Rajan D, Abdul-Khaliq H, Banka S, Bauer UM, Bentham J, Berger F, Bhattacharya S, Bu'Lock F, Canham N, Colgiu IG, Cosgrove C, Cox H, Daehnert I, Daly A, Danesh J, Fryer A, Gewillig M, Hobson E, Hoff K, Homfray T; INTERVAL Study., Kahlert AK, Ketley A, Kramer HH, Lachlan K, Lampe AK, Louw JJ, Manickara AK, Manase D, McCarthy KP, Metcalfe K, Moore C, Newbury-Ecob R, Omer SO, Ouwehand WH, Park SM, Parker MJ, Pickardt T, Pollard MO, Robert L, Roberts DJ, Sambrook J, Setchfield K, Stiller B, Thornborough C, Toka O, Watkins H, Williams D, Wright M, Mital S, Daubeney PE, Keavney B, Goodship J; UK10K Consortium., Abu-Sulaiman RM, Klaassen S, Wright CF, Firth HV, Barrett JC, Devriendt K, FitzPatrick DR, Brook JD; Deciphering Developmental Disorders Study., Hurles ME. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat Genet. 2016 Sep;48(9):1060-5.

PubMed ID: 
27479907

Mental Retardation, X-Linked 99, Syndromic, Female-Restricted

Clinical Characteristics
Ocular Features: 

Palpebral fissures are generally shortened and may slant up or down.  Cataracts of unknown morphology have been reported and strabismus is common.

Systemic Features: 

The systemic phenotype is highly variable.  Skull and facial anomalies are common with brachycephaly, bitemporal narrowing, and a broad low nasal bridge. There is general developmental delay in both motor and cognitive abilities.  Patients are short in stature while scoliosis, hip dysplasia, and post-axial polydactyly may be present.  The teeth may be malformed and numerous (29%) of individuals have hypertrichosis.  Nearly a third of individuals have a cleft palate/bifid uvula.   Heart malformations, primarily atrial septal defects, are found in about half of affected individuals and urogenital anomalies such as renal dysplasia are relatively common.  Feeding difficulties have been reported while anal atresia is present in about half of patients.   

Brain imaging reveals hypoplasia of the corpus callosum, enlarged ventricles, Dandy-Walker malformations, cerebellar hypoplasia, and abnormal gyration patterns in the frontal lobe.  Generalized hypotonia has been diagnosed in half of reported patients and seizures occur in 24%.

Genetics

This female-restricted syndrome is caused by heterozygous mutations in the USP9X gene (Xp11.4).  X-chromosome inactivation is skewed greater than 90% in the majority of females but the degree of skewing in one study was independent of clinical severity.  The majority of cases occur de novo.

In males, hemizygous mutations in the USP9X gene (300919) cause a somewhat similar disorder (MRX99) without the majority of the congenital malformations having mainly the intellectual disabilities, hypotonia, and behavioral problems.

Pedigree: 
X-linked dominant, mother affected
Treatment
Treatment Options: 

There is no known treatment for the general disorder but individual anomalies or defects such as atrial septal defects, cleft palate, and anal atresia might be surgically corrected.

References
Article Title: 

De Novo Loss-of-Function Mutations in USP9X Cause a Female-Specific Recognizable Syndrome with Developmental Delay and Congenital Malformations

Reijnders MR, Zachariadis V, Latour B, Jolly L, Mancini GM, Pfundt R, Wu KM, van Ravenswaaij-Arts CM, Veenstra-Knol HE, Anderlid BM, Wood SA, Cheung SW, Barnicoat A, Probst F, Magoulas P, Brooks AS, Malmgren H, Harila-Saari A, Marcelis CM, Vreeburg M, Hobson E, Sutton VR, Stark Z, Vogt J, Cooper N, Lim JY, Price S, Lai AH, Domingo D, Reversade B; DDD Study, Gecz J, Gilissen C, Brunner HG, Kini U, Roepman R, Nordgren A, Kleefstra T. De Novo Loss-of-Function Mutations in USP9X Cause a Female-Specific Recognizable Syndrome with Developmental Delay and Congenital Malformations. Am J Hum Genet. 2016 Feb 4;98(2):373-81.

PubMed ID: 
26833328

Corpus Callosum Agenesis with Facial Anomalies and Cerebellar Ataxia

Clinical Characteristics
Ocular Features: 

The thick, bushy eyebrows and long eyelashes are part of the generalized hirsutism.  The eyelids appear puffy.  Strabismus of unknown type has been reported.

Systemic Features: 

Infants are hypertonic at birth but this seems to be less evident as they grow.  Slow physical growth and psychomotor delay are common.  The skull in newborns is small.  The ears are low-set, protruding, and posteriorly rotated.  The nostrils are anteverted and the lower lip protrudes.  There are severe cognitive defects which has been called mental retardation.  Speech is poor or may never develop.  Cerebellar ataxia and uncoordinated hand movements are features.  Brain imaging reveals cerebellar hypoplasia and some degree of corpus callosum agenesis including absence.

Genetics

Homozygous mutations in the FRMD4A gene (10p13) have been found to segregate with this disorder in a large consanguineous Bedouin kindred.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Donnai-Barrow Syndrome

Clinical Characteristics
Ocular Features: 

A number of ocular features have been described in this disorder, including telecanthus, hypertelorism, and iris hypoplasia with marked iris transillumination.  Myopia is commonly present and retinal detachments are a risk.  Several patients had iris colobomas.  Cataracts, small optic nerves, and macular hypoplasia have been reported as well.  The lid fissures usually slant downward. 

Systemic Features: 

The facial dysmorphology, in addition to the periocular malformations, includes a prominent brow or frontal bossing, posterior rotation of the ears, a flat nasal bridge and a short nose.  Sensorineural hearing loss is universal and at least some patients have complete or partial agenesis of the corpus callosum, and an enlarged anterior fontanel.  Diaphragmatic and umbilical hernias often occur together.  Low-molecular-weight proteinuria in the absence of aminoaciduria is a frequent feature.  Developmental delays are often seen but occasional patients have normal intellect.  Rare patients have seizures. 

Genetics

This is a rare autosomal recessive disorder caused by homozygous mutations in the LRP2 (low-density lipoprotein receptor-related protein 2 or megalin) gene located at 2q24-q31.  Some patients have an ocular phenotype resembling the Stickler syndrome (609508).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Treatment is focused on specific manifestations such as cataract and retinal detachment surgery. Patients need to be monitored throughout life for retinal disease.  Omphaloceles and diaphragmatic hernias need to be repaired.  Hearing aids may be beneficial. 

References
Article Title: 
Subscribe to RSS - posteriorly rotated ears