muscle weakness

Pierson Syndrome

Clinical Characteristics
Ocular Features: 

Microcoria is the most consistent ocular feature but is not present in some families.  It is congenital and sometimes seen with iris hypoplasia.  Glaucoma and lens opacities (including posterior lenticonus sometimes) are present in one-fourth of patients.  Corneal size varies with some patients having apparent macrocornea which can lead to the mistaken diagnosis of buphthalmos.  Pigment mottling and clumping is common in the retina and the ERG can show changes characteristic of cone-rod dystrophy.  Retinal thinning is often present as well.  Non-rhegmatogenous retinal detachments occur in 24% of patients and optic atrophy is seen in some individuals.  There is considerable interocular, intrafamilial, and interfamilial variability in these signs. 

Systemic Features: 

The primary and most consistent systemic problem is progressive renal disease. Congenital nephrotic syndrome with proteinuria, hypoalbuminemia and hypertension is characteristic.  Renal failure eventually occurs although the rate of progression varies. Most patients require a renal transplant for end-stage kidney disease in the first decade of life.  Kidney histology shows glomerulosclerosis, peritubular scarring, and diffuse mesangial sclerosis.  Hypotonia and muscle weakness are sometimes present and congenital myasthenia has been reported.  Severe global psychomotor retardation is common and many infants never achieve normal milestones. 

Genetics

This is an autosomal recessive disorder resulting from homozygous mutations in the LAMB2 gene located at 3p21.  The normal gene encodes laminin beta-2 that is strongly expressed in intraocular muscles which may explain the hypoplasia of ciliary and pupillary muscles in Pierson syndrome.  Mutations in this gene are often associated with nephronophthisis but ocular abnormalities are not always present. 

Microcoria is also a feature of the autosomal dominant ocular condition known as congenital microcoria (156600).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Kidney replacement can restore renal function.  Glaucoma, cataracts, and retinal detachments require the usual treatment but patient selection is important due to the neurological deficits.  Lifelong monitoring is essential. 

References
Article Title: 

Ocular findings in a case of Pierson syndrome with a novel mutation in laminin ß2 gene

Arima M, Tsukamoto S, Akiyama R, Nishiyama K, Kohno RI, Tachibana T, Hayashida A, Murayama M, Hisatomi T, Nozu K, Iijima K, Ohga S, Sonoda KH. Ocular findings in a case of Pierson syndrome with a novel mutation in laminin ss2 gene. J AAPOS. 2018 Aug 16. pii: S1091-8531(18)30497-X. doi: 10.1016/j.jaapos.2018.03.016. [Epub ahead of print].

PubMed ID: 
30120985

Ophthalmological aspects of Pierson syndrome

Bredrup C, Matejas V, Barrow M, Bl?deghov?deg K, Bockenhauer D, Fowler DJ, Gregson RM, Maruniak-Chudek I, Medeira A, Mendon?ssa EL, Kagan M, Koenig J, Krastel H, Kroes HY, Saggar A, Sawyer T, Schittkowski M, Swietli?Nski J, Thompson D, VanDeVoorde RG, Wittebol-Post D, Woodruff G, Zurowska A, Hennekam RC, Zenker M, Russell-Eggitt I. Ophthalmological aspects of Pierson syndrome. Am J Ophthalmol. 2008 Oct;146(4):602-611.

PubMed ID: 
18672223

Tay-Sachs Disease

Clinical Characteristics
Ocular Features: 

Retinal ganglion cells become dysfunctional as a result of the toxic accumulation of intra-lysosomal GM2 ganglioside molecules causing early visual symptoms.  These cells in high density around the fovea centralis create a grayish-white appearance.  Since ganglion cells are absent in the foveolar region, this area retains the normal reddish appearance, producing the cherry-red spot.  Axonal decay and loss of the ganglion cells leads to optic atrophy and blindness.

Systemic Features: 

Sandoff disease may be clinically indistinguishable from Tay-Sachs disease even though the same enzyme is defective (albeit in separate subunits A and B that together comprise the functional hexosaminidase enzyme).   The infantile form of this lysosomal storage disease is the most common.  Infants appear to be normal until about 3-6 months of age when neurological development slows and muscles become weak.  Seizures, loss of interest, and progressive paralysis begin after this together with loss of vision and hearing.  The facies are coarse and the tongue is enlarged.  An exaggerated startle response is considered an early and helpful sign in the diagnosis.  Hepatosplenomegaly is usually not present.  Among infants with early onset disease, death usually occurs by 3 or 4 years of age.     

Ataxia with spinocerebellar degeneration, motor neuron disease, and progressive dystonia are more common in individuals with later onset of neurodegeneration.  The juvenile and adult-onset forms of the disease also progress more slowly.

Genetics

Tay-Sachs disease is an autosomal recessive disorder caused by mutations in the hexosaminidase A gene, HEXA, (15q23-q24).  The altered enzyme is unable to break down GM2 ganglioside which accumulates in lysosomes and leads to neuronal death.

A related form, clinically and biochemically similar to Tay-Sachs disease , is GM2-gangliosidosis (272750) but it is caused by mutations in GM2A (5q31.3-q33.1) with normal hexosaminidase A and B.  Sandhoff disease (268800) is clinically indistinguishable but caused by mutations in the beta subunit of hexosaminidase (HEXB) A and B at 5q13. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Treatment is largely supportive.  Anticonvulsant pharmaceuticals may help in the control of seizures but require frequent modifications as the neuronal degeneration progresses.  Airways and nutrition maintainence are important.

Application of gene therapy to cell cultures have shown promise in restoring enzyme function and may someday lead to human treatment. 

    

References
Article Title: 

Tay-Sachs disease

Fernandes Filho JA, Shapiro BE. Tay-Sachs disease. Arch Neurol. 2004 Sep;61(9):1466-8. Review.

PubMed ID: 
15364698

Oculopharyngeal Muscular Dystrophy

Clinical Characteristics
Ocular Features: 

Progressive ptosis is the cardinal ocular feature of this syndrome (present in at least 88% of patients).  External ophthalmoparesis of some degree is often present with weakness of upgaze most common.

Systemic Features: 

This is a late onset form of progressive muscular dystrophy with onset of symptoms during midlife (mean age of onset ~48 years).  Evidence of pharyngeal muscle weakness often occurs concomitantly with the ocular signs (43%).  Ptosis occurs first in 43% and dysphagia first in 14%.    Dysarthria and dysphagia are often associated with facial muscle weakness.  Swallowing times for ice cold water and dry food is usually prolonged.  Evidence of weakness and wasting of neck and limb muscles is usually noted later.  Life expectancy is normal in contrast to some other forms of muscular dystrophy.  Some patients have significant gait problems and generalized disability as a result of muscle weakness.

Microscopic studies of muscle biopsies usually show evidence of myopathy with abnormal fibers and accumulations of sarcoplasmic matter.  Intranuclear inclusions consisting of tubular filaments and mitochondrial abnormalities have also been described.  Serum CK can be significantly elevated in severe cases.  

Genetics

This is an autosomal dominant disorder resulting from mutations in the PABPN1 gene located at 14q11.2-q13. Several patients with homozygous and compound heterozygous mutations have also been reported.  The PABPN1 gene product is normally a facilitator of polyadenylation of mRNA molecules and may also be active in regulating mRNA production.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Blepharoplasty may be helpful in cases with severe ptosis.  Cricopharyngeal myotomy for dysphagia and recurrent pneumonia can alleviate symptoms in severe cases although recurrence has been noted after many years.

References
Article Title: 

Myotonic Dystrophy 2

Clinical Characteristics
Ocular Features: 

Polychromatic lens opacities and posterior subcapsular sclerosis are found in 15-30% of patients. 

Ptosis, ophthalmoplegia and strabismus are not features of DM2.As many as 25% of patients with DM have a pigmentary retinopathy, usually in a butterfly pattern.

Systemic Features: 

Symptoms of myotonia usually appear in the third and fourth decades of life while evidence of limb girdle muscle weakness usually appears much later.  There is no infancy or childhood form of the disease and developmental delays do not occur.   In some patients the proximal muscles seem to be more affected than distal muscles and such cases are sometimes referred to as PROMM disease.  In these patients the neck and finger flexors may be the first to be affected.  However, there is considerable clinical variability.  Facial weakness is minimal.  Eventually both proximal and distal muscles weaken.  Myalgia of a burning, tearing nature can be debilitating.  Cardiac arrhythmias occur in a minority of patients.  Frontal balding is characteristic.  The long-term prognosis is better than in patients with myotonic dystrophy 1 (160900), and some but not all reports suggest fewer individuals experience age-related cognitive decline.  Insulin insensitivity and testicular failure occur in approximately half of patients.

PROMM disease and DM2 are now generally accepted as the same disease and the latter designation is preferred.

Genetics

Like classic myotonic dystrophy 1 (160900), this disorder also results from an abnormal number of repeats (in this case of CCTG).  Up to 30 tetranucleotide repeats in CNBP (3q21.3) is normal but patients with myotonic dystrophy 2 may have 11,000 or more and the number increases with age.  The repeat length may diminish with generational transmission.  Unlike DM 1, the repeat number does not seem to correlate with disease severity.  Both DM1 and DM2 are inherited in an autosomal dominant pattern.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

There is no treatment for the muscle disease but many patients require analgesic medication for muscle pain.  Visually significant cataracts should be removed.  Some patients require supportive care.

References
Article Title: 

Myotonic Dystrophy 1

Clinical Characteristics
Ocular Features: 

Posterior subcapsular cataracts may be seen at any age, often with striking iridescent opacities in the overlying cortex as well.  These polychromatic lens changes can be diagnostic but are present in only 50% of young adults with myotonic dystrophy.  When present, they are almost always bilateral.  Proximal muscle involvement leads to ptosis, strabismus, weakness of the orbicularis oculi, and sometimes ophthalmoplegia.  Such muscle weakness may lead to exposure keratitis. 

As many as 25% of patients with DM have a pigmentary retinopathy, usually in a butterfly pattern.

A low IOP and even hypotony is sometimes seen.  The mean IOP in a series of 51 patients has been reported as 10.9 compared with 15.4 in controls.  Using ultrasound biomicroscopy, ciliary body detachments were found in at least one quadrant of all eyes.

Systemic Features: 

In the congenital form, hypotonia, generalized weakness, mental retardation and respiratory insufficiency are often present.  There is a great deal of clinical heterogeneity among patients.  Those with mild disease may have only cataracts and mild myotonia with a normal life expectancy.  Those with more severe disease (classical myotonic dystrophy) have these signs plus marked muscle weakness and wasting.  Cardiac conduction defects with secondary arryhthmias are a significant cause of mortality. Such patients tend to become disabled in adulthood.  Symptoms become evident in the second decade or later.  Deep muscle pain is common and can be severe.  Distal muscle weakness usually begins before facial muscle weakness is apparent.  Myotonia often involves the tongue while proximal muscle weakness can cause dysphagia and dysarthria.  Such patients may also suffer respiratory distress. Reproductive fitness is reduced in males who can have gonadal atrophy.  Frontal balding is common.  Some age-related cognitive decline occurs.

Over 60% of patients have a hearing impairment and more than half of these have auditory brainstem response abnormalities.  Vestibular hypesthesia is present in 37.5%.

Genetics

Myotonic dystrophy 1 is an autosomal dominant disorder caused by a trinucleotide (CTG) repeat expansion in a region of the DMPK gene (19q13.2-q13.3).  The number of repeats varies widely and is roughly correlated with severity of disease.  Infants with congenital myotonia usually have the highest number of repeats and have the most severe cognitive deficits.  The number can expand during gametogenesis each generation (resulting in the phenomenon of anticipation) and females generally transmit larger numbers.  Most infants with congenital myotonia are offspring of affected mothers.  Reduced fetal movement and hydramnios are often noted during such pregnancies.

Affected males have few offspring secondary to gonadal atrophy.  Affected heterozygous females, however, do not have the expected ratio of affected offspring because of the dynamic nature of the number of repeats.  The risk of an affected offspring for a nulliparous afflicted female is only 3-9% and she has a 20-40% risk of recurrence after the birth of an affected child.

In a study of sibships with myotonic dystrophy, 58% of offspring were affected when the transmitting parent was male and 63% when the transmitting parent was female.

At least some of the variable transmission risks and clinical heterogeneity may be explained by somatic instability of the CTG repeat numbers.  The degree of instability, moreover, may also be heritable.  Age of onset, for example, is modified by the level of somatic instability.  Further, patients in whom the repeat expands more rapidly develop symptoms earlier. 

A similar disorder, myotonic dystrophy 2 (602668), is caused by a tetranucleotide repeat expansion in the CNBP gene.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

A variety of pharmaceutical agents have been tried for pain management without consistent results.  No treatment improves the muscle weakness.  Cholesterol lowering drugs such as statins should be avoided.  Physical therapy may be helpful.

Cardiac conduction and structural defects are a significant threat even in asymtomatic patients and require constant monitoring for the development of arrythmias.

References
Article Title: 

Inner ear dysfunction in myotonic dystrophy type 1

Balatsouras DG, Felekis D, Panas M, Xenellis J, Koutsis G, Kladi A, Korres SG. Inner ear dysfunction in myotonic dystrophy type 1. Acta Neurol Scand. 2012 Nov 5. doi: 10.1111/ane.12020. [Epub ahead of print].

PubMed ID: 
23121018

Somatic instability of the expanded CTG triplet repeat in myotonic dystrophy type 1 is a heritable quantitative trait and modifier of disease severity

les F, Couto JM, Higham CF, Hogg G, Cuenca P, Braida C, Wilson RH, Adam B, Del Valle G, Brian R, Sittenfeld M, Ashizawa T, Wilcox A, Wilcox DE, Monckton DG. Somatic instability of the expanded CTG triplet repeat in myotonic dystrophy type 1 is a heritable quantitative trait and modifier of disease severity. Hum Mol Genet. 2012 May 16. [Epub ahead of print].

PubMed ID: 
22595968

Incidence and predictors of sudden death, major conduction defects and sustained ventricular tachyarrhythmias in 1388 patients with myotonic dystrophy type 1

Wahbi K, Babuty D, Probst V, Wissocque L, Labombarda F, Porcher R, Becane HM, Lazarus A, Behin A, Laforet P, Stojkovic T, Clementy N, Dussauge AP, Gourraud JB, Pereon Y, Lacour A, Chapon F, Milliez P, Klug D, Eymard B, Duboc D. Incidence and predictors of sudden death, major conduction defects and sustained ventricular tachyarrhythmias in 1388 patients with myotonic dystrophy type 1. Eur Heart J. 2016 Dec 9. pii: ehw569. [Epub ahead of print] PubMed.

PubMed ID: 
27941019

Homocystinuria, MTHFR Deficiency

Clinical Characteristics
Ocular Features: 

The ocular signs in MTHFR deficiency are likely similar to those found in beta-synthase deficiency (236200) but no comparative study has been reported.  Ectopia lentis is common and the high mobility of the lens carries a significant risk of pupillary block glaucoma and migration into the anterior chamber.

Systemic Features: 

There is a wide range in clinical disease in MTHFR deficiency but the neurological signs and the progressive of disease seem to be more aggressive than in beta-synthase deficiency (236200) . Neonates may have seizures and failure to thrive but other affected patients may live to adulthood without symptoms.  Early death from neurological complications is more common and the mental retardation is apparently more severe.  There is a serious risk for thromboembolic events which may be life-threatening.  Hyperhomocyteinemia and low plasma methionine are present as is increased homocystine in urine.

Genetics

Mutations in MTHFR (1p36.3) are responsible for this form of homocystinuria.  Another form, beta-synthase deficiency (236200), is caused by a mutation in the CBS  gene (21q22.3).  This is an autosomal recessive disorder.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Administration of betaine has been reported to reduce the neurological disease but it must be started early before brain damage occurs.  It does not correct hyperhomocysteinemia nor does it correct CNS MTHFR deficiency.  It has also been reported that betaine in combination with folic acid and cobalamin can prevent symptoms.

References
Article Title: 

Mutation Update and Review of Severe MTHFR

Froese DS, Huemer M, Suormala T, Burda P, Coelho D, Gueant JL, Landolt MA,
Kozich V, Fowler B, Baumgartner MR. Mutation Update and Review of Severe MTHFR
Deficiency
. Hum Mutat. 2016 Feb 13.

PubMed ID: 
2687264

Charcot-Marie-Tooth Disease with Glaucoma

Clinical Characteristics
Ocular Features: 

Optic atrophy can be an ocular manifestation of CMT disease, especially in the X-linked forms, but this variant is the only one in which early-onset glaucoma is a feature.  It may begin at birth in some patients who have features of congenital glaucoma such as buphthalmos, while in other family members, including juveniles, only elevated intraocular pressures were reported.  Optic nerve damage seems to occur rapidly.

Systemic Features: 

This is a sensorineural disease of myelination that causes a polyneuropathy with muscular weakness and sensory deficits.  CMT4B2 is characterized by abnormal myelin sheath folding.  Symptoms of lower limb weakness and evidence of muscle atrophy commonly appear in the middle of the first decade with progression to upper limb involvement.  Areflexia follows with development of pes cavus and hammertoes.  Motor nerve conduction velocities may be severely reduced and muscle biopsies show severe loss of myelinated fibers and focal myelin sheath folding.

Genetics

This seems to be an autosomal recessive disorder although only a few families have been reported.  Homozygous mutations in the SBF2 gene (sometimes called MTMR13) (11p15.4) were found in these CMT families with early-onset glaucoma (604563).  This gene codes for SET binding factor 2 important to the normal development of the trabecular meshwork.  Not all SBF2 mutations cause glaucoma though.  Of course, it is possible that the occurrence of glaucoma is incidental and not part of CMT4B2 at all.

A clinically similar neurological condition without glaucoma, CMT4B1 (601382), has been reported to be caused by a mutation in MTMR2 located at 11q22 (601382). 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Little is known about the natural history of the glaucoma in this condition but it occurs early and severe visual loss seems to be common.  Early diagnosis and vigorous treatment are important.  The neurological disease requires a multidisciplinary approach with physical therapists, neurologists, orthopedic surgeons and the use of prostheses.

References
Article Title: 

Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma

Azzedine H, Bolino A, Taieb T, Birouk N, Di Duca M, Bouhouche A, Benamou S, Mrabet A, Hammadouche T, Chkili T, Gouider R, Ravazzolo R, Brice A, Laporte J, LeGuern E. Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma. Am J Hum Genet. 2003 May;72(5):1141-53.

PubMed ID: 
12687498

External Ophthalmoplegia, C10ORF2 and mtDNA Mutations

Clinical Characteristics
Ocular Features: 

Ptosis and external ophthalmoplegia are found in almost all patients.  These have a variable onset with some patients not symptomatic until midlife or later.  External ophthalmoplegia may be the only symptom.  Onset in late adolescence has also been reported.  Cataracts often occur.

Systemic Features: 

About half (52%) of patients have fatigue and weakness.  Ataxia and peripheral neuropathy with paresthesias are sometimes present. Some patients report bulbar symptoms of dysphagia, dysarthria and dysphonia.  Skeletal muscle biopsies show typical ragged red fibers and evidence of mitochondrial dysfunction with cytochrome c oxidase (COX) deficiency.  Late onset of typical features of parkinsonism including a resting tremor, rigidity, and bradykinesia is seen in some patients.  Several individuals have reported major depression and/or bipolar disorder. Myopathy (33%) with muscle wasting and respiratory difficulties can occur.   As many as 24% of patients have cardiac abnormalities consisting primarily of conduction defects.

Genetics

This an autosomal dominant disorder secondary to mutations in the C10ORF2 (Twinkle) gene (10q24) in association with mitochondrial DNA depletion.  It accounts for approximately 35% of autosomal dominant cases of external ophthalmoplegia.

At least two additional mutations cause similar external ophthalmoplegia syndromes: PEOA1 (157640, 258450), and PEOA2 (609283).

The same gene may have mutations that are responsible for spinocerebellar ataxia, infantile-onset (271245), a more generalized and progressive neurodegenerative disease transmitted in an autosomal recessive pattern.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No effective treatment is known.

References
Article Title: 

The clinical, histochemical, and molecular spectrum of PEO1(Twinkle)-linked adPEO

Fratter C, Gorman GS, Stewart JD, Buddles M, Smith C, Evans J, Seller A, Poulton J, Roberts M, Hanna MG, Rahman S, Omer SE, Klopstock T, Schoser B, Kornblum C, Czermin B, Lecky B, Blakely EL, Craig K, Chinnery PF, Turnbull DM, Horvath R, Taylor RW. The clinical, histochemical, and molecular spectrum of PEO1(Twinkle)-linked adPEO. Neurology. 2010 May 18;74(20):1619-26.

PubMed ID: 
20479361

Gyrate Atrophy

Clinical Characteristics
Ocular Features: 

Gyrate atrophy is characterized by night blindness, myopia, and multiple round islands of peripheral chorioretinal degeneration which often appear in the first decade of life, sometimes as early as five years of age. Night blindness often begins in late childhood. The atrophic areas slowly progress to the posterior pole and may eventually affect central vision. Both eyes are usually symmetrically affected. All patients have myopia, some with refractive errors ranging up to -20 D. Fluorescein angiography shows hyperfluorescent at the edges of the peripheral atrophy. A zone of pigmentary changes can be seen between normal and atrophic areas.  The electroretinogram may show reduced rod and cone responses with rods affected more than cones in early phases. Dark-adapted ERG documents elevated rod thresholds.  Swollen mitochondria have been described in photoreceptors, corneal epithelium, and in the nonpigmented ciliary epithelium.  Elevated levels of ornithine are found in plasma, urine, spinal fluid and aqueous humor.  Macular edema is commonly present and posterior subcapsular cataracts requiring surgery are common.

Systemic Features: 

Mild muscle weakness may occur due to tubular aggregates in type 2 muscle fibers, which can be visualized with electron microscopy and may lead to loss of these fibers and muscle wasting. Fine, straight hairs have been observed with patches of alopecia. Slow wave background changes on EEG have been described in about one-third of patients and peripheral neuropathy is sometimes a feature.  Hearing loss has been described as well. Some newborns have a temporary elevation of plasma ammonia but once treated usually does not recur.

Genetics

Gyrate atrophy is an autosomal recessive disorder, caused by mutations in the OAT (ornithine aminotransferase) gene on chromosome 10 (10q26).  The enzyme is part of a nuclear-encoded mitochondrial matrix complex.  Many allelic variants have been found.  A large number of affected patients of Finnish origin, most of who share the common L402P mutation, have been described.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

A low protein and especially an arginine-restricted diet have been shown to slow loss of function as measured by ERG and visual field changes.
 

References
Article Title: 

Pages

Subscribe to RSS - muscle weakness