low-set ears

Barber-Say Syndrome

Clinical Characteristics
Ocular Features: 

The ocular features consist mainly of skin changes in the lids including hyperlaxity and redundancy.  There may be ectropion of the lower eyelids and sparsity of the eyebrows.  Some evidence of micro- or ablepharon is often present.  Hypertelorism and exophthalmia have been described.

Systemic Features: 

Multiple external congenital anomalies are present at birth including skin laxity, hypertrichosis (especially of the forehead, neck and back), and low-set and malformed pinnae.  Macrostomia and thin lips with redundant facial skin are often evident.  The nose appears bulbous.  The thoracic skin can be atrophic and the nipples may be hypoplastic.  Hypospadias has been reported.  A highly arched or cleft palate may be present and some individuals have a conductive hearing loss.  The teeth are small and eruption may be delayed.  Cognitive deficits may be present and mental retardation has been reported. 

Genetics

Based on genotyping and the limited number of reported pedigrees, inheritance most likely follows an autosomal dominant pattern.  Direct parent to child transmission has been reported.  Detailed examination of parents sometimes reveals mild features that are easily missed.  Mutations in the TWIST2 gene have been found in 10 unrelated individuals with Barber-Say syndrome.

TWIST2 mutations have also been found in Setleis syndrome (227260) and in ablepharon-macrostomia syndrome (200110).  These conditions have some clinical features in common with Barber-Say syndrome.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

There is no known treatment for this disorder but correction of selected anomalies such as ectropion and cleft palate may be indicated.

References
Article Title: 

Recurrent Mutations in the Basic Domain of TWIST2 Cause Ablepharon Macrostomia and Barber-Say Syndromes

Marchegiani S, Davis T, Tessadori F, van Haaften G, Brancati F, Hoischen A, Huang H, Valkanas E, Pusey B, Schanze D, Venselaar H, Vulto-van Silfhout AT, Wolfe LA, Tifft CJ, Zerfas PM, Zambruno G, Kariminejad A, Sabbagh-Kermani F, Lee J, Tsokos MG, Lee CC, Ferraz V, da Silva EM, Stevens CA, Roche N, Bartsch O, Farndon P, Bermejo-Sanchez E, Brooks BP, Maduro V, Dallapiccola B, Ramos FJ, Chung HY, Le Caignec C, Martins F, Jacyk WK, Mazzanti L, Brunner HG, Bakkers J, Lin S, Malicdan MC, Boerkoel CF, Gahl WA, de Vries BB, van Haelst MM, Zenker M, Markello TC. Recurrent Mutations in the Basic Domain of TWIST2 Cause Ablepharon Macrostomia and Barber-Say Syndromes. Am J Hum Genet. 2015 Jul 2;97(1):99-110.

PubMed ID: 
26119818

Pontocerebellar Hypoplasia 3

Clinical Characteristics
Ocular Features: 

Optic atrophy is an inconsistent feature (sometimes even unilateral) of patients with PCH.  Cortical blindness has also been described.  There may be dysmorphic facial features such as wide palpebral fissures, epicanthal folds, and prominent eyes. 

Systemic Features: 

Infants are generally small and hypotonic at birth.  The skull is small and often brachycephalic.  The ears are large and low-set and  facial dysmorphism (full cheeks, long philtrum) is present.  Infants have poor head control and truncal ataxia.  Later, hyperreflexia and spasticity become evident.  Seizures are common.  Developmental delays, both somatic and mental, are nearly universal and large joint contractures are often seen. Many of these signs are progressive.  

Brain imaging generally reveals cerebral and cerebellar atrophy, a hypoplastic corpus callosum, a small cerebellar vermis, and a hypoplastic brainstem.  Short stature is a feature and early death often occurs.

Genetics

PCH3 is one of at least 10 syndromes belonging to a clinically and genetically heterogeneous group of conditions known as pontocerebellar hypoplasias.  Members of this group, while individually rare, nevertheless collectively account for a significant proportion of what was once labeled cerebral palsy.

PCH3 results from homozygous mutations in the PCLO gene (7q21). 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available for the general disorder.

References
Article Title: 

Loss of PCLO function underlies pontocerebellar hypoplasia type III.

Ahmed MY, Chioza BA, Rajab A, Schmitz-Abe K, Al-Khayat A, Al-Turki S, Baple EL, Patton MA, Al-Memar AY, Hurles ME, Partlow JN, Hill RS, Evrony GD, Servattalab S, Markianos K, Walsh CA, Crosby AH, Mochida GH. Loss of PCLO function underlies pontocerebellar hypoplasia type III. Neurology. 2015 Apr 28;84(17):1745-50.

PubMed ID: 
25832664

Cataracts, Congenital, Deafness, Short Stature, Developmental Delay

Clinical Characteristics
Ocular Features: 

The facial features superficially resemble those often seen in Down syndrome patients with slanting (up or down) lid fissures and epicanthal folds. The amount of ptosis is variable.  Lens opacities are usually congenital in origin.  Hypopigmentation of the macula has been noted in two individuals.

Systemic Features: 

The characteristic facies may be evident at birth and requires karyotyping to rule out the trisomy of Down syndrome. Brachycephaly and a flat face may be present.  The mouth is often small and the nasal tip is shortened while the philtrum is long and smooth.  Some degree of intellectual disability and neurosensory hearing loss soon become evident.  There is postnatal growth delay and most individuals are short in stature.  The ears are low-set and rotated posteriorly.

The skeletal anomalies are not fully delineated but one patient had bilateral radioulnar synostosis while hip chondrolysis requiring hip replacement has been seen in two adult individuals.  Limited motion may be present in some joints, both large and small.  Seizures have been reported in a few individuals. Nails may appear dystrophic and there are variable tooth anomalies present. 

Genetics

The responsible heterozygous mutations are in the MAF gene (16q22-q23).  Type 4 (CCA4) (610202) autosomal dominant cerulean cataracts with multiple morphologies may also result from mutations in this transcription factor gene.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No general treatment for this condition is known.  Congenital cataracts can be removed.  Some patients may benefit from special education.   Seizure medications may be indicated and some patients can benefit from hearing aids.  Severe joint disease may require replacement.

References
Article Title: 

Mutations Impairing GSK3-Mediated MAF Phosphorylation Cause Cataract, Deafness, Intellectual Disability, Seizures, and a Down Syndrome-like Facies

Niceta M, Stellacci E, Gripp KW, Zampino G, Kousi M, Anselmi M, Traversa A, Ciolfi A, Stabley D, Bruselles A, Caputo V, Cecchetti S, Prudente S, Fiorenza MT, Boitani C, Philip N, Niyazov D, Leoni C, Nakane T, Keppler-Noreuil K, Braddock SR, Gillessen-Kaesbach G, Palleschi A, Campeau PM, Lee BH, Pouponnot C, Stella L, Bocchinfuso G, Katsanis N, Sol-Church K, Tartaglia M. Mutations Impairing GSK3-Mediated MAF Phosphorylation Cause Cataract, Deafness, Intellectual Disability, Seizures, and a Down Syndrome-like Facies. Am J Hum Genet. 2015 May 7;96(5):816-25.

PubMed ID: 
25865493

CODAS Syndrome

Clinical Characteristics
Ocular Features: 

Dense nuclear cataracts can be seen by six months of age.  Some patients have ptosis. The fundi have been described as normal at one month of age in a single infant but vision was described at the 20/200 level at 2 years of age.  Cataracts noted at 4 months had been removed.

Systemic Features: 

Patients have multiple severe systemic abnormalities.  There is generalized developmental delay along with mild microcephaly and hypotonia.   The forehead is often broad while the face appears flattened with anteverted nares, a flat nasal bridge, a short philtrum, low-set and crumpled ears.  Infants may have an inadequate upper respiratory apparatus with atrophic vocal cords and some die of laryngeal obstruction in the first days of life.  Sialorrhea and difficulty swallowing have been noted.  Mild to moderate neurosensory hearing loss is often present but there may also be a conduction component to this. 

Brain imaging has revealed large ventricles, with subcortical hypomyelination, a thin corpus callosum, and prominent cortical sulci.  The vertebrae may have coronal clefts and scoliosis often develops. Generalized metaphyseal dysplasia and delayed bone age are usually present.  The anus may be imperforate and a rectovaginal fistula and cryptorchidism have been reported.  Long bones may be malformed as well and most patients are short in stature. Delayed dentition, enamel dysplasia, and abnormal cusp morphology are often present.  Cardiac septal defects may be seen.

Genetics

Homozygous mutations in LONF1 (19p13.3) segregate with the phenotype.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

There is no general treatment available and infants sometimes die from laryngeal obstruction in the first days of life.   Individual anomalies may be surgically correctable in selected individuals.  Occasional infants are stillborn but one patient died an accidental death at 14 years of age. 

References
Article Title: 

CODAS syndrome is associated with mutations of LONP1, encoding mitochondrial AAA+ Lon protease

Strauss KA, Jinks RN, Puffenberger EG, Venkatesh S, Singh K, Cheng I, Mikita N, Thilagavathi J, Lee J, Sarafianos S, Benkert A, Koehler A, Zhu A, Trovillion V, McGlincy M, Morlet T, Deardorff M, Innes AM, Prasad C, Chudley AE, Lee IN, Suzuki CK. CODAS syndrome is associated with mutations of LONP1, encoding mitochondrial AAA+ Lon protease. Am J Hum Genet. 2015 Jan 8;96(1):121-35.

PubMed ID: 
25574826

Galloway-Mowat Syndrome

Clinical Characteristics
Ocular Features: 

Microphthalmia, hypertelorism, epicanthal folds and ptosis are prominent ocular features.  Other manifestations include corneal opacities, cataracts, and optic atrophy.  Nystagmus of a roving nature is seen in all individuals and is usually present at birth.  There is evidence of visual impairment in more than 90% of individuals.  Features of an anterior chamber dysgenesis such as a hypoplastic iris are sometimes present.

The ocular features of this syndrome have not been fully described.

Systemic Features: 

Infants are born with low birth weight due to intrauterine growth retardation and there is often a history of oligohydramnios.  Newborns are often floppy and hypotonic although spasticity may develop later.  A small midface and microcephaly (80%) with a sloping forehead and a flat occiput are frequently evident.  The ears are large, floppy, and low-set while the hard palate is highly arched and the degree of micrognathia can be severe.  The fists are often clenched and the digits can appear narrow and arachnodactylous.  Hiatal hernias may be present.

Many patients develop features of the nephrotic syndrome in the first year of life with proteinuria and hypoalbuminemia due to glomerular kidney disease and renal system malformations.  Renal biopsies show focal segmental glomerulosclerosis in the majority of glomeruli.

Evidence of abnormal neuronal migration with brain deformities such as cystic changes, porencephaly, encephalomalacia, and spinal canal anomalies have been reported.  MRI imaging shows diffuse cortical and cerebellar atrophy atrophic optic nerves, and thinning of the corpus callosum.  The normal striated layers of the lateral geniculate nuclei are obliterated.  The cerebellum shows severe cellular disorganization with profound depletion of granule cells and excessive Bergmann gliosis.  The vermis is shortened. 

Multifocal seizures are sometimes (40%) seen in infancy and early childhood and the EEG generally shows slowed and disorganized backgound and sometimes a high-voltage hypsarrhythmia.  The degree of psychomotor delay and intellectual disability is often severe.   Most patients are unable to sit independently (90%), ambulate (90%), or make purposeful hand movements (77%).  The majority (87%) of children have extrapyramidal movements and a combination of axial dystonia and limb chorea.  Mean age of death is about 11 years (2.7 to 28 years in one series) and most die from renal failure.

Genetics

Gallaway-Mowat syndrome is likely a spectrum of disease.  Homozygous mutations in the WDR73 gene (15q25) are responsible for one form of this syndrome.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

There is no treatment for GAMOS.

References
Article Title: 

Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73

Jinks RN, Puffenberger EG, Baple E, Harding B, Crino P, Fogo AB, Wenger O, Xin B, Koehler AE, McGlincy MH, Provencher MM, Smith JD, Tran L, Al Turki S, Chioza BA, Cross H, Harlalka GV, Hurles ME, Maroofian R, Heaps AD, Morton MC, Stempak L, Hildebrandt F, Sadowski CE, Zaritsky J, Campellone K, Morton DH, Wang H, Crosby A, Strauss KA. Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73. Brain. 2015 Aug;138(Pt 8):2173-90.  PubMed PMID: 26070982.

PubMed ID: 
26070982

Loss-of-Function Mutations in WDR73 Are Responsible for Microcephaly and Steroid-Resistant Nephrotic Syndrome: Galloway-Mowat Syndrome

Colin E, Huynh Cong E, Mollet G, Guichet A, Gribouval O, Arrondel C, Boyer O, Daniel L, Gubler MC, Ekinci Z, Tsimaratos M, Chabrol B, Boddaert N, Verloes A, Chevrollier A, Gueguen N, Desquiret-Dumas V, Ferre M, Procaccio V, Richard L, Funalot B, Moncla A, Bonneau D, Antignac C. Loss-of-Function Mutations in WDR73 Are Responsible for Microcephaly and Steroid-Resistant Nephrotic Syndrome: Galloway-Mowat Syndrome. Am J Hum Genet. 2014 Dec 4;95(6):637-48..

PubMed ID: 
25466283

Neu-Laxova Syndrome 2

Clinical Characteristics
Ocular Features: 

The eyes appear prominent, an effect that is sometimes exaggerated by absent or malformed eyelids.

Systemic Features: 

Intrauterine growth retardation is common and infants are born with significant deformities including microcephaly, limb malformations, flexion deformities, ichthyosis, and edema of the hands and feet.   Brain malformations may be present as well.

Genetics

This disorder has a transmission pattern consistent with autosomal recessive inheritance.  Homozygous or compound heterozygous mutations in the PSAT1 gene (9q21.2) are responsible. 

This condition has similar features to Neu-Laxova syndrome 1 (256520) but is less severe and results from a different mutation.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available.

References
Article Title: 

Neu-laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway

Acuna-Hidalgo R, Schanze D, Kariminejad A, Nordgren A, Kariminejad MH, Conner P, Grigelioniene G, Nilsson D, Nordenskjold M, Wedell A, Freyer C, Wredenberg A, Wieczorek D, Gillessen-Kaesbach G, Kayserili H, Elcioglu N, Ghaderi-Sohi S, Goodarzi P, Setayesh H, van de Vorst M, Steehouwer M, Pfundt R, Krabichler B, Curry C, MacKenzie MG, Boycott KM, Gilissen C, Janecke AR, Hoischen A, Zenker M. Neu-laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway. Am J Hum Genet. 2014 Sep 4;95(3):285-93.

PubMed ID: 
25152457

Temtamy Syndrome

Clinical Characteristics
Ocular Features: 

Bilateral chorioretinal colobomas may be present and involve the optic nerve in one-third of patients.  Visual acuity is not measureable but significant vision impairment is evident in most patients and may be progressive in some individuals.  Several have been reported with dislocated lenses, ptosis, microcornea, cataracts, microphthalmia, myopia, and posterior staphylomas.

Systemic Features: 

Mild, nonspecific craniofacial dysmorphism is often present.  Some form of macrocephaly, with an elongated face, low-set ears, and micrognathia has been reported.  Short stature is of the proportionate type.  Significant developmental delay is evident during childhood and patients are nonverbal. A variety of cardiovascular anomalies such as septal defects, aortic dilation, and patent ductus arteriosus have been described. MRI shows mild hypoplasia of the corpus callosum.   The gait may be ataxic and some (59%) individuals have spasticity of limb muscles with or without contractures.  Seizures develop in early childhood, usually before the age of 3 years, and are difficult to control. 

Genetics

The inconsistent and highly variable phenotype hints that this is a genetically heterogeneous condition.  Many patients seem to have an autosomal recessive condition secondary to mutations in C12orf57 (12p13.31).

A syndrome consisting primarily of colobomas, ptosis, hypertelorism, and global delay (243310) has some similar clinical features but is caused by mutations in ACTG1.

Treatment
Treatment Options: 

No therapy is available for the syndrome but attempts to control the seizures should be made. 

References
Article Title: 

Exome sequencing identifies compound heterozygous mutations in C12orf57 in two siblings with severe intellectual disability, hypoplasia of the corpus callosum, chorioretinal coloboma, and intractable seizures

Platzer K, Huning I, Obieglo C, Schwarzmayr T, Gabriel R, Strom TM, Gillessen-Kaesbach G, Kaiser FJ. Exome sequencing identifies compound heterozygous mutations in C12orf57 in two siblings with severe intellectual disability, hypoplasia of the corpus callosum, chorioretinal coloboma, and intractable seizures. Am J Med Genet A. 2014 May 5. [Epub ahead of print].

PubMed ID: 
24798461

Whole-exome sequencing identifies mutated c12orf57 in recessive corpus callosum hypoplasia

Akizu N, Shembesh NM, Ben-Omran T, Bastaki L, Al-Tawari A, Zaki MS, Koul R, Spencer E, Rosti RO, Scott E, Nickerson E, Gabriel S, da Gente G, Li J, Deardorff MA, Conlin LK, Horton MA, Zackai EH, Sherr EH, Gleeson JG. Whole-exome sequencing identifies mutated c12orf57 in recessive corpus callosum hypoplasia. Am J Hum Genet. 2013 Mar 7;92(3):392-400.

PubMed ID: 
23453666

New autosomal recessive multiple congenital abnormalities/mental retardation syndrome with craniofacial dysmorphism absent corpus callosum, iris colobomas and connective tissue dysplasia

Temtamy SA, Salam MA, Aboul-Ezz EH, Hussein HA, Helmy SA, Shalash BA. New autosomal recessive multiple congenital abnormalities/mental retardation syndrome with craniofacial dysmorphism absent corpus callosum, iris colobomas and connective tissue dysplasia. Clin Dysmorphol. 1996 Jul;5(3):231-40. Review.

PubMed ID: 
8818452

Roberts Syndrome

Clinical Characteristics
Ocular Features: 

The eyes often appear prominent as the result of shallow orbits.  Hypertelorism and microphthalmia can be present.  The sclerae can have a bluish hue.   Cataracts and central corneal clouding plus scleralization and vascularization of the peripheral corneas are sometimes seen.  Lid colobomas and down-slanting palpebral fissures may be present.

Systemic Features: 

Failure of both membranous and long bones to grow properly lead to a variety of abnormalities such as craniosynostosis, hypomelia, syndactyly, oligodactyly, malar hypoplasia, short neck, micrognathia, and cleft lip and palate.  The long bones of the limbs may be underdeveloped or even absent.  Contractures of elbow, knee, and ankle joints are common as are digital anomalies.  Low birth weight and slow postnatal growth rates are usually result in short stature.  The hair is often sparse and light-colored. 

Mental development is impaired and some children are diagnosed to have mental retardation.  Cardiac defects are common.  Facial hemangiomas are often present as are septal defects and sometimes a patent ductus arteriosus.  External genitalia in both sexes appear enlarged.  The kidneys may be polycystic or horseshoe-shaped.

Genetics

This is an autosomal recessive condition caused by mutations in the ESCO2 gene (8p21.1).  Mutations in the same gene are also responsible for what some have called the SC phocomelia syndrome (269000) which has a similar but less severe phenotype.  Some consider the two disorders to be variants of the same condition and they are considered to be the same entity in this database.  The gene product is required for structural maintenance of centromeric cohesion during the cell cycle.  Microscopic anomalies of the centromeric region (puffing of the heterochromatic regions) are sometimes seen during cell division.

The Baller-Gerold syndrome (218600) has some phenotypic overlap with Roberts syndrome but is caused by mutations in a different gene (RECQL4).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Severely affected infants may be stillborn or die in infancy.  Other individuals live to adulthood.  There is no treatment for this condition beyond specific correction of individual anomalies.

References
Article Title: 

Baraitser-Winter Syndrome 1

Clinical Characteristics
Ocular Features: 

Ptosis (both unilateral and bilateral), hypertelorism, prominent epicanthal folds, and colobomata are common.  The iris stroma may be dysplastic and correctopia has been observed.  Visual acuity has not been measured.

Systemic Features: 

Postnatal growth retardation leads to short stature.  Microcephaly and morphological aberrations in the brain such as lissencephaly, agenesis of the corpus callosum and pachygyria are present.  Seizures and developmental delays are common.  Hearing loss is sensorineural in type.

The ears are low-set and the posterior hair line may be low as well.  The nasal bridge appears broad and the nose appears short. Male genitalia are often underdeveloped.  Bicuspid aortic valves, patent ductus arteriosus, and aortic stenosis have been reported.

Genetics

Heterozygous mutations in the ACTB gene (7p22.1) are responsible for this apparent autosomal dominant syndrome.  However, all patients have been sporadic.

This condition is clinically similar to Baraitser-Winter syndrome 2 (614583) which is a unique entity caused by a mutation in ACTG1

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No specific treatment is available.

References
Article Title: 

New ocular finding in Baraitser-Winter syndrome

Rall N, Leon A, Gomez R, Daroca J, Lacassie Y. New ocular finding in Baraitser-Winter syndrome. Eur J Med Genet. 2017 Oct 9. pii: S1769-7212(17)30156-8. doi: 10.1016/j.ejmg.2017.10.006. [Epub ahead of print].

PubMed ID: 
29024830

Baraitser-Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases

Verloes A, Di Donato N, Masliah-Planchon J, Jongmans M, Abdul-Raman OA, Albrecht B, Allanson J, Brunner H, Bertola D, Chassaing N, David A, Devriendt K, Eftekhari P, Drouin-Garraud V, Faravelli F, Faivre L, Giuliano F, Guion Almeida L, Juncos J, Kempers M, Eker HK, Lacombe D, Lin A, Mancini G, Melis D, Lourenco CM, Siu VM, Morin G, Nezarati M, Nowaczyk MJ, Ramer JC, Osimani S, Philip N, Pierpont ME, Procaccio V, Roseli ZS, Rossi M, Rusu C, Sznajer Y, Templin L, Uliana V, Klaus M, Van Bon B, Van Ravenswaaij C, Wainer B, Fry AE, Rump A, Hoischen A, Drunat S, Riviere JB, Dobyns WB, Pilz DT. Baraitser-Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases. Eur J Hum Genet. 2014 Jul 23.

PubMed ID: 
25052316

De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome

Riviere JB, van Bon BW, Hoischen A, Kholmanskikh SS, O'Roak BJ, Gilissen C, Gijsen S, Sullivan CT, Christian SL, Abdul-Rahman OA, Atkin JF, Chassaing N, Drouin-Garraud V, Fry AE, Fryns JP, Gripp KW, Kempers M, Kleefstra T, Mancini GM, Nowaczyk MJ, van Ravenswaaij-Arts CM, Roscioli T, Marble M, Rosenfeld JA, Siu VM, de Vries BB, Shendure J, Verloes A, Veltman JA, Brunner HG, Ross ME, Pilz DT, Dobyns WB. De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome. Nat Genet. 2012 Feb 26;44(4):440-4.

PubMed ID: 
22366783

Orofaciodigital Syndrome, Type VI

Clinical Characteristics
Ocular Features: 

Hypertelorism and epicanthal folds have been described.  Some patients have nystagmus and strabismus. Ocular apraxia and difficulties in smooth visual pursuit may be present.   

Systemic Features: 

Polydactyly of the hands is a common feature.  The central metacarpal is often Y-shaped leading to ‘central polydactyly’.  The large toes may be bifid.  Cognitive deficits are common and some patients have been considered mentally retarded.  The ears are low-set and rotated posteriorly.  Some patients have a conductive hearing loss.  Oral anomalies may include a lobed tongue, lingual and sublingual hemartomas, micrognathia, clefting, and multiple buccoalveolar frenula.  Congenital heart anomalies, micropenis, and cryptorchidism have been reported.  Tachypnea and tachycardia have been noted.  Some patients have some degree of skeletal dysplasia and many individuals are short in stature.

The presence of cerebellar abnormalities such as hypoplasia (including absence) of the vermis may help to distinguish type VI from other forms of OFDS.  Hypothalamic dysfunction may be responsible for poor temperature regulation (hyperthermia). The ‘molar tooth sign’ seen on brain MRIs in Joubert syndrome (213300) is also present in OFDS VI. 

Genetics

This is a rare condition with limited family information.  Parents in one family were consanguineous, and multiple affected sibs in other families suggest this may be an autosomal recessive condition.  Homozygous mutations in TMEM216 have been found. Other patients have mutations in C5orf42.

Many of the clinical features in OFDS VI are also found among individuals with Joubert (213300) and Meckel (249000) syndromes that also sometimes have mutations in the TMEM216 and C5orf42 genes.  Some consider all of these conditions to be members of a group of overlapping disorders called ciliopathies or ciliary dyskinesias.   

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No specific treatment is available for this syndrome but individual signs and symptoms may need treatment.

References
Article Title: 

C5orf42 is the major gene responsible for OFD syndrome type VI

Lopez E, Thauvin-Robinet C, Reversade B, Khartoufi NE, Devisme L, Holder M, Ansart-Franquet H, Avila M, Lacombe D, Kleinfinger P, Kaori I, Takanashi JI, Le Merrer M, Martinovic J, No?'l C, Shboul M, Ho L, G?oven Y, Razavi F, Burglen L, Gigot N, Darmency-Stamboul V, Thevenon J, Aral B, Kayserili H, Huet F, Lyonnet S, Le Caignec C, Franco B, Rivi?(r)re JB, Faivre L, Atti?(c)-Bitach T. C5orf42 is the major gene responsible for OFD syndrome type VI. Hum Genet. 2013 Nov 1. [Epub ahead of print].

PubMed ID: 
24178751

Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes

Valente EM, Logan CV, Mougou-Zerelli S, Lee JH, Silhavy JL, Brancati F, Iannicelli M, Travaglini L, Romani S, Illi B, Adams M, Szymanska K, Mazzotta A, Lee JE, Tolentino JC, Swistun D, Salpietro CD, Fede C, Gabriel S, Russ C, Cibulskis K, Sougnez C, Hildebrandt F, Otto EA, Held S, Diplas BH, Davis EE, Mikula M, Strom CM, Ben-Zeev B, Lev D, Sagie TL, Michelson M, Yaron Y, Krause A, Boltshauser E, Elkhartoufi N, Roume J, Shalev S, Munnich A, Saunier S, Inglehearn C, Saad A, Alkindy A, Thomas S, Vekemans M, Dallapiccola B, Katsanis N, Johnson CA, Atti?(c)-Bitach T, Gleeson JG. Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes. Nat Genet. 2010 Jul;42(7):619-25.

PubMed ID: 
20512146

Pages

Subscribe to RSS - low-set ears