cerebellar atrophy

Encephalopathy, Progressive, with Amyotrophy and Optic Atrophy

Clinical Characteristics
Ocular Features: 

Optic atrophy is present.

Systemic Features: 

This is a progressive neurodegenerative condition in which hypotonia and delayed development are evident between birth and 14 months of age.  Developmental milestones, if attained, soon regress accompanied by distal amyotrophy, cognitive impairment that may be severe, ataxia, spastic tetraplegia, dysarthria, and scoliosis.  Seizures often occur.

Brain imaging reveals cerebellar and cerebral atrophy.  Iron accumulation may be seen in the pallidum and substantia nigra.  The corpus callosum appears abnormally thin.  Muscle biopsy shows evidence of denervation atrophy.

Genetics

Homozygous or compound heterozygous mutations in the TBCE gene (1q42.3) can cause this disorder.  

Biallelic mutations in the same gene also cause Kenny-Caffey syndrome type 1 (244460) and a hypoparathyroidism dysmorphism syndrome (241410).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

TBCE Mutations Cause Early-Onset Progressive Encephalopathy with Distal Spinal Muscular Atrophy

Sferra A, Baillat G, Rizza T, Barresi S, Flex E, Tasca G, D'Amico A, Bellacchio E, Ciolfi A, Caputo V, Cecchetti S, Torella A, Zanni G, Diodato D, Piermarini E, Niceta M, Coppola A, Tedeschi E, Martinelli D, Dionisi-Vici C, Nigro V, Dallapiccola B, Compagnucci C, Tartaglia M, Haase G, Bertini E. TBCE Mutations Cause Early-Onset Progressive Encephalopathy with Distal Spinal Muscular Atrophy. Am J Hum Genet. 2016 Oct 6;99(4):974-983.

PubMed ID: 
27666369

Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy

Flex E, Niceta M, Cecchetti S, Thiffault I, Au MG, Capuano A, Piermarini E, Ivanova AA, Francis JW, Chillemi G, Chandramouli B, Carpentieri G, Haaxma CA, Ciolfi A, Pizzi S, Douglas GV, Levine K, Sferra A, Dentici ML, Pfundt RR, Le Pichon JB, Farrow E, Baas F, Piemonte F, Dallapiccola B, Graham JM Jr, Saunders CJ, Bertini E, Kahn RA, Koolen DA, Tartaglia M. Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy. Am J Hum Genet. 2016 Oct 6;99(4):962-973.

PubMed ID: 
27666370

Epileptic Encephalopathy, Early Infantile 48

Clinical Characteristics
Ocular Features: 

Poor eye contact is present from infancy.  Optic atrophy has been reported in several patients and features of retinitis pigmentosa were present in sibs of one family.

Systemic Features: 

Infants usually present with hypotonia and feeding difficulties.  Global developmental delay is also noted early and becomes more obvious with time.  Seizures are often seen early and become intractable.  Many individuals have microcephaly.  Hypermobility with dyskinesias and hyporeflexia are often present.  Speech is generally absent and many individuals are unable to sit or walk.

Brain imaging often shows atrophy of the cerebrum and cerebellum accompanied by enlarged ventricles and a thin corpus callosum.

Genetics

Homozygous or compound heterozygous mutations in the AP3B2 gene (15q25.2) can be responsible for this condition.

For another somewhat similar condition see early onset epileptic encephalopathy 28 (616211) with autosomal recessive inheritance.  For an autosomal dominant condition with a similar clinical picture, see early onset epileptic encephalopathy 47 (617166).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Autosomal-Recessive Mutations in AP3B2, Adaptor-Related Protein Complex 3 Beta 2 Subunit, Cause an Early-Onset Epileptic Encephalopathy with Optic Atrophy

Assoum M, Philippe C, Isidor B, Perrin L, Makrythanasis P, Sondheimer N, Paris C, Douglas J, Lesca G, Antonarakis S, Hamamy H, Jouan T, Duffourd Y, Auvin S, Saunier A, Begtrup A, Nowak C, Chatron N, Ville D, Mireskandari K, Milani P, Jonveaux P, Lemeur G, Milh M, Amamoto M, Kato M, Nakashima M, Miyake N, Matsumoto N, Masri A, Thauvin-Robinet C, Riviere JB, Faivre L, Thevenon J. Autosomal-Recessive Mutations in AP3B2, Adaptor-Related Protein Complex 3 Beta 2 Subunit, Cause an Early-Onset Epileptic Encephalopathy with Optic Atrophy. Am J Hum Genet. 2016 Dec 1;99(6):1368-1376.

PubMed ID: 
27889060

Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield

Anazi S, Maddirevula S, Faqeih E, Alsedairy H, Alzahrani F, Shamseldin HE, Patel N, Hashem M, Ibrahim N, Abdulwahab F, Ewida N, Alsaif HS, Al Sharif H, Alamoudi W, Kentab A, Bashiri FA, Alnaser M, AlWadei AH, Alfadhel M, Eyaid W, Hashem A, Al Asmari A, Saleh MM, AlSaman A, Alhasan KA, Alsughayir M, Al Shammari M, Mahmoud A, Al-Hassnan ZN, Al-Husain M, Osama Khalil R, Abd El Meguid N, Masri A, Ali R, Ben-Omran T, El Fishway P, Hashish A, Ercan Sencicek A, State M, Alazami AM, Salih MA, Altassan N, Arold ST, Abouelhoda M, Wakil SM, Monies D, Shaheen R, Alkuraya FS. Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield. Mol Psychiatry. 2016 Jul 19. doi: 10.1038/mp.2016.113. [Epub ahead of print].

PubMed ID: 
27431290

Encephalopathy, Early-Onset, With Brain Atrophy and Thin Corpus Callosum

Clinical Characteristics
Ocular Features: 

Optic atrophy is present in many patients and may be present early since lack of visual tracking or eye contact may be noted at birth.  Sparse eyebrows, upslanting palpebral fissures, and hypertelorism have also been reported.

Systemic Features: 

Severe hypotonia is present at birth often causing respiratory distress in the neonate.  Spasticity can develop later.  Growth failure with progressive microcephaly is present in infants.  Brain imaging often reveals diffuse atrophy of structures including the cerebellum, brainstem, spinal cord, and cerebrum.  Tongue fasciculations have been observed.   Micrognathia and widely spaced teeth are sometimes present.  Several patients have died during infancy.

Genetics

Homozygous mutations in the TBCD (17q25.3) are responsible for this disorder.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy

Flex E, Niceta M, Cecchetti S, Thiffault I, Au MG, Capuano A, Piermarini E, Ivanova AA, Francis JW, Chillemi G, Chandramouli B, Carpentieri G, Haaxma CA, Ciolfi A, Pizzi S, Douglas GV, Levine K, Sferra A, Dentici ML, Pfundt RR, Le Pichon JB, Farrow E, Baas F, Piemonte F, Dallapiccola B, Graham JM Jr, Saunders CJ, Bertini E, Kahn RA, Koolen DA, Tartaglia M. Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy. Am J Hum Genet. 2016 Oct 6;99(4):962-973.

PubMed ID: 
27666370

Biallelic TBCD Mutations Cause Early-Onset Neurodegenerative Encephalopathy

Miyake N, Fukai R, Ohba C, Chihara T, Miura M, Shimizu H, Kakita A, Imagawa E, Shiina M, Ogata K, Okuno-Yuguchi J, Fueki N, Ogiso Y, Suzumura H, Watabe Y, Imataka G, Leong HY, Fattal-Valevski A, Kramer U, Miyatake S, Kato M, Okamoto N, Sato Y, Mitsuhashi S, Nishino I, Kaneko N, Nishiyama A, Tamura T, Mizuguchi T, Nakashima M, Tanaka F, Saitsu H, Matsumoto N. Biallelic TBCD Mutations Cause Early-Onset Neurodegenerative Encephalopathy. Am J Hum Genet. 2016 Oct 6;99(4):950-961.

PubMed ID: 
27666374

Epileptic Encephalopathy, Early Infantile 47

Clinical Characteristics
Ocular Features: 

The fundus is normal early but optic atrophy with narrowed vessels develops eventually.  Cerebral visual impairment has been described.  VEPs were normal at 4 months of age in one patient.

Systemic Features: 

Tonic seizures have their onset in the first month of life.  These become refractory as documented by the EEG which shows severe background slowing, multifocal origins, and hypsarrhythmia.  Psychomotor development is severely delayed and accompanied by profound intellectual disability.  The two reported children were unable to stand and never developed speech.  Feeding difficulties requires tube feeding.  Microcephaly eventually develops along with axial hypotonia and limb ataxia.

Brain MRI was normal at 5 months of age in one individual but at 6 years old showed cerebellar atrophy.  Her younger male sibling at 2 months of age had a normal MRI but cerebellar atrophy was present at 3 years of age.  He died at 3.5 years while his older sib died at age 7 years.

Genetics

Heterozygous mutations in the FGF12 gene (3q28-q29) are responsible for this condition.  One family with 2 affected children has been reported but neither parent carried the mutation in somatic cells suggesting germline mosaicism.

For autosomal recessive forms of early onset epileptic encephalopathy in this database see Epileptic Encephalopathy, Early Infantile 28 (616211) and Epileptic Encephalopathy, Early Infantile 48 (617276).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment is available for the general condition.  Complete supportive care is required.  Seizures are described as 'refractory' to treatment.

References
Article Title: 

Neurodegeneration with Ataxia, Dystonia, and Gaze Palsy, Childhood-Onset

Clinical Characteristics
Ocular Features: 

Vertical gaze palsy has its onset between 7 and 15 years of age.   Nystagmus and oculomotor apraxia are often present.

Systemic Features: 

Onset of unsteadiness, gait ataxia, and cognitive decline are evident in the first or second decades of life.  Dysdiadokinesis, dysarthria, dysmetria, dystonia, athetotic movements, signs of Parkinsonism with tremor may also be present.  Some patients have a mild hearing loss.  Tissue from muscle biopsies are normal.  Brain imaging reveals cerebellar atrophy in some families and iron deposition in the basal ganglia in others.

Many patients are wheelchair-bound eventually.

Genetics

Homozygous mutations in the SQSTM1 gene (5q35.3) are responsible for this condition. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported but physical therapy, speech therapy, and special education may be of benefit.

References
Article Title: 

Absence of the Autophagy Adaptor SQSTM1/p62 Causes Childhood-Onset Neurodegeneration with Ataxia, Dystonia, and Gaze Palsy

Haack TB, Ignatius E, Calvo-Garrido J, Iuso A, Isohanni P, Maffezzini C, Lonnqvist T, Suomalainen A, Gorza M, Kremer LS, Graf E, Hartig M, Berutti R, Paucar M, Svenningsson P, Stranneheim H, Brandberg G, Wedell A, Kurian MA, Hayflick SA, Venco P, Tiranti V, Strom TM, Dichgans M, Horvath R, Holinski-Feder E, Freyer C, Meitinger T, Prokisch H, Senderek J, Wredenberg A, Carroll CJ, Klopstock T. Absence of the Autophagy Adaptor SQSTM1/p62 Causes Childhood-Onset Neurodegeneration with Ataxia, Dystonia, and Gaze Palsy. Am J Hum Genet. 2016 Sep 1;99(3):735-43.

PubMed ID: 
27545679

Encephalopathy Due To Defective Mitochondrial And Peroxisomal Fission 2

Clinical Characteristics
Ocular Features: 

Visual impairment and optic atrophy are usually present.  Visual-evoked potentials may be negative or slowed severely.  Some degree of ophthalmoparesis is often present while frank external ophthalmoplegia can develop in the second year of life.  In one patient aged 7 years, MRI showed increased T2 signals in the optic radiation.

Systemic Features: 

Microcephaly becomes evident in the first year of life and seizures can appear in this period as well.  General developmental delays are present.  There may be evidence of Leigh-like basal ganglia disease.  Dysphagia may require the placement of a gastroscopy tube.  Truncal hypotonia can be so severe that sitting and head control are not possible.  However, there is often spasticity and hyperreflexia in the limbs.  EEG recordings show hypsarrhythmia.

Brain MRI may show increased T2 signaling in the global pallidus, thalamus, and the subthalamic nucleus.

Patients may never be able to sit or walk and usually do not develop speech.  

Genetics

Homozygous or compound heterozygous truncating mutations in the MFF gene (mitochondrial fission factor) (2q36.3) is responsible for this condition.  Patients with EMPF2 may have abnormally elongated and tubular mitochondria and peroxisomes in fibroblasts.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available for the general disorder.  Gastrostomy tubes may be required to maintain adequate nutrition.  Airway hygiene is important.  Respiratory complications can be a factor in the early demise of children.

References
Article Title: 

Spinocerebellar Ataxia 42

Clinical Characteristics
Ocular Features: 

 Saccadic eye movements with nystagmus and diplopia have been reported (7 of 10 reported patients).

Systemic Features: 

Cerebellar signs usually have their onset in midlife or later with slow progression.  Most patients are mildly to moderately disabled.  Dysarthria, dysphagia, and a spastic gait are experienced by the majority of individuals.  Hyperreflexia and a positive Babinski sign are commonly presently.  Mild cognitive impairment and depression have been seen in a minority of patients.

Brain MRIs show cerebellar hemispheric and vermian atrophy.  The cerebral cortex appeared histologically normal in one deceased patient.

Genetics

This disorder is caused by heterozygous mutations in the CACNA1G gene (17q21.33).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Cerebellar Atrophy, Visual Impairment, and Psychomotor Retardation

Clinical Characteristics
Ocular Features: 

Patients usually have deep-set eyes.  Cortical visual impairment has been described in one patient but optic atrophy has been seen in another.  The VEP and ERG are described as 'abnormal'.  Strabismus, hyperopia, and myopia are sometimes seen.

Systemic Features: 

Progressive microcephaly is often noted.  Truncal hypotonia and scoliosis may be present while muscle tone is increased in the extremities in the presence of diminished deep tendon reflexes in other patients.  Dystonic posturing occurs in some families.  Gingival hyperplasia is a common feature and retrognathia is often present.

Brain imaging reveals progressive cerebellar atrophy and a foreshortened corpus callosum in all families.  Various degrees of cerebral atrophy have been identified while intellectual disability may be marked.  Speech delay is common.

Genetics

This is an autosomal recessive condition associated with homozygous mutations in the EMC1 gene (1p36.13).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatnent has been reported.

References
Article Title: 

Monoallelic and Biallelic Variants in EMC1 Identified in Individuals with Global Developmental Delay, Hypotonia, Scoliosis, and Cerebellar Atrophy

Harel T, Yesil G, Bayram Y, Coban-Akdemir Z, Charng WL, Karaca E, Al Asmari A, Eldomery MK, Hunter JV, Jhangiani SN, Rosenfeld JA, Pehlivan D, El-Hattab AW, Saleh MA, LeDuc CA, Muzny D, Boerwinkle E; Baylor-Hopkins Center for Mendelian Genomics, Gibbs RA, Chung WK, Yang Y, Belmont JW, Lupski JR. Monoallelic and Biallelic Variants in EMC1 Identified in Individuals with Global Developmental Delay, Hypotonia, Scoliosis, and Cerebellar Atrophy. Am J Hum Genet. 2016 Mar 3;98(3):562-70.

PubMed ID: 
26942288

Spastic Paraplegia 75

Clinical Characteristics
Ocular Features: 

Nystagmus with optic atrophy is usually present and one individual had glaucoma. 

Systemic Features: 

This is an early-onset and progressive neurodegenerative disorder.  Hypotonia may be present at birth.  A spastic gait and difficulty walking is noted in early childhood and most individuals never walk unassisted. Yong adults have spastic paresis with extensor plantar responses and clonus has been reported.  Distal muscle atrophy in the lower extremities has been noted.  Speech is dysarthric.  Brain imaging has been normal in some patients whereas others have mild atrophy of the cerebellum and the corpus callosum.  Cognitive impairment is variable with some individuals showing poor school performance while others are described as mentally retarded.

Genetics

Homozygous mutations in the MAG gene (19q13.12) are responsible for this disorder.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No effective treatment has been reported although physical therapy may be helpful. Special education, speech and physical therapy, and low vision devices might also be of benefit.

References
Article Title: 

Myelin-associated glycoprotein gene mutation causes Pelizaeus-Merzbacher disease-like disorder

Lossos A, Elazar N, Lerer I, Schueler-Furman O, Fellig Y, Glick B, Zimmerman BE, Azulay H, Dotan S, Goldberg S, Gomori JM, Ponger P, Newman JP, Marreed H, Steck AJ, Schaeren-Wiemers N, Mor N, Harel M, Geiger T, Eshed-Eisenbach Y, Meiner V, Peles E. Myelin-associated glycoprotein gene mutation causes Pelizaeus-Merzbacher disease-like disorder. Brain. 2015 Sep;138(Pt 9):2521-36.

PubMed ID: 
26179919

Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders

Novarino G, Fenstermaker AG, Zaki MS, Hofree M, Silhavy JL, Heiberg AD, Abdellateef M, Rosti B, Scott E, Mansour L, Masri A, Kayserili H, Al-Aama JY, Abdel-Salam GM, Karminejad A, Kara M, Kara B, Bozorgmehri B, Ben-Omran T, Mojahedi F, Mahmoud IG, Bouslam N, Bouhouche A, Benomar A, Hanein S, Raymond L,Forlani S, Mascaro M, Selim L, Shehata N, Al-Allawi N, Bindu PS, Azam M, Gunel M, Caglayan A, Bilguvar K, Tolun A, Issa MY, Schroth J, Spencer EG, Rosti RO, Akizu N, Vaux KK, Johansen A, Koh AA, Megahed H, Durr A, Brice A, Stevanin G, Gabriel SB, Ideker T, Gleeson JG. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science. 2014 Jan 31;343(6170):506-11.

PubMed ID: 
24482476

Infantile Cerebellar-Retinal Degeneration

Clinical Characteristics
Ocular Features: 

Visual tracking can be normal during the newborn period but lack of visual fixation and attention soon become evident.  Strabismus, nystagmus, and abnormal pursuit movements are often present.  Optic atrophy has been reported as early as 3 years of age.  VEP and ERG responses are extinguished in the first two years. The nystagmus may be multidirectional.  Acuity loss seems to be progressive.  A progressive retinal degeneration (not further characterized) has been reported.

Systemic Features: 

Infants generally appear normal at birth.  Within the first 6 months they show signs of developmental delay and neurological signs such as truncal hypotonia, seizures, athetosis and head bobbing.  Milestones of sitting, rolling over, and reactions to others are seldom achieved.  Cerebellar brain imaging shows progressive atrophy in all patients and some have cortical atrophy as well.  Some patients have evidence of hearing loss.   Severe failure to thrive and psychomotor delays are usually present.  Death may occur within several months of birth although some live for several decades.

Genetics

This condition results from homozygous or compound heterozygous mutations in the ACO2 gene (22q13.2).  The mutation has also been associated with optic atrophy 9 (616289).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment beyond supportive care is known.

References
Article Title: 

Mutations in the tricarboxylic acid cycle enzyme, aconitase 2, cause either isolated or syndromic optic neuropathy with encephalopathy and cerebellar atrophy

Metodiev MD, Gerber S, Hubert L, Delahodde A, Chretien D, Gerard X, Amati-Bonneau P, Giacomotto MC, Boddaert N, Kaminska A, Desguerre I, Amiel J, Rio M, Kaplan J, Munnich A, Rotig A, Rozet JM, Besmond C. Mutations in the tricarboxylic acid cycle enzyme, aconitase 2, cause either isolated or syndromic optic neuropathy with encephalopathy and cerebellar atrophy. J Med Genet. 2014 Dec;51(12):834-8.

PubMed ID: 
25351951

Pages

Subscribe to RSS - cerebellar atrophy