autosomal recessive

Macular Dystrophy, Vitelliform 4

Clinical Characteristics
Ocular Features: 

This is a late onset form of vitelliform dystrophy in which symptoms are usually noted between the ages of 20 to 45 years.  The vitelliform lesions usually occur singly and are often small.  Some individuals have small drusen-like macular lesions adjacent to the vitelliform lesions, at the periphery of the macula, or even outside the macula.  The lesions contain lipofuscin which can be seen on autofluorescence photographs.  Visual acuity can remain near normal for many years.  The EOG ratio and ERG responses are usually normal or near normal.  Choroidal neovascularization has not been described. 

Systemic Features: 

There are no systemic manifestations.

Genetics

This form of vitelliform dystrophy (VMD4) is caused by heterozygous mutations in the IMPG1 gene (6q14.1).  However, rare families have been reported in which compound heterozygous or homozygous mutations have been found.  Some of the heterozygous parents of children with two mutations were found to have minor fundus changes such as tiny extramacular vitelliform spots in spite of being asymptomatic. This suggests that the transmission pattern of fundus changes may be both autosomal recessive and autosomal dominant. 

Genotyping has identified at least 5 forms of vitelliform macular dystrophy.  In addition to the iconic Best disease (VMD2, 153700) apparently first described by Friedreich Best in 1905 and now attributed to mutations in the Best1 gene, we know of at least 4 more and specific mutations have been identified in three.  No mutation or locus has yet been identified in VMD1 (153840) but it is likely a unique condition since mutations in other genes known to cause vitelliform dystrophy have been ruled out.  Other forms are VMD3 (608161) due to mutations in the PRPH2 gene, VMD4 described here, and VMD5 (616152) caused by mutations in the IMPG2 gene.

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available for the vitelliform disease but low vision devices can be helpful in some patients for selected tasks.

References
Article Title: 

Mutations in IMPG1 cause vitelliform macular dystrophies

Manes G, Meunier I, Avila-Fernandez A, Banfi S, Le Meur G, Zanlonghi X, Corton M, Simonelli F, Brabet P, Labesse G, Audo I, Mohand-Said S, Zeitz C, Sahel JA, Weber M, Dollfus H, Dhaenens CM, Allorge D, De Baere E, Koenekoop RK, Kohl S, Cremers FP, Hollyfield JG, Senechal A, Hebrard M, Bocquet B, Ayuso Garcia C, Hamel CP. Mutations in IMPG1 cause vitelliform macular dystrophies. Am J Hum Genet. 2013 Sep 5;93(3):571-8.

PubMed ID: 
23993198

Familial Exudative Vitreoretinopathy, EVR5

Clinical Characteristics
Ocular Features: 

The clinical picture is highly heterogeneous.  Abnormal peripheral vascularization of the retina is generally evident and most individuals have retinal exudates.  The amount of exudation is dependent to some extent upon age.  Fluorescein angiography may demonstrate incomplete vascularization of the peripheral retina.  The ocular phenotype can resemble retinal dysplasia.  Occasional infants can have severe retinal disease and may be considered blind but many individuals have minimal disease and retain good vision into adulthood.  Unfortunately, traction retinal detachments may develop at any time and are responsible for blindness in some patients. 

Cataracts are sometimes present. Ectopic pupils, lack of well-defined pupillary collarettes, remnants of the fetal vascular stalk, and shallowing of the anterior chamber have been noted in several patients.  Microphthalmia and corneal opacities may also be present.  Horizontal nystagmus can be seen in severely affected babies before one month of age.

Systemic Features: 

No systemic features have been reported.

Genetics

This disorder can be inherited in an autosomal dominant pattern as the result of heterozygous mutations in the TSPAN12 gene (7q31.31).  However, individuals with more severe disease may have homozygous mutations in this gene. 

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

This disorder can be inherited in an autosomal dominant pattern as the result of heterozygous mutations in the TSPAN12 gene (7q31.31).  However, individuals with more severe disease may have homozygous or compound heterozygous mutations in this gene. 

References
Article Title: 

Retinal Dystrophy, Cataracts, and Short Stature

Clinical Characteristics
Ocular Features: 

Patients develop progressive night vision problems in the first decade of life.  However, central acuity remains in the 20/20 to 20/30 range at least through the second decade.  Cataracts are noted during this time period as well.  Visual field constriction is present.

Pigmentary retinopathy is present, especially in the posterior poles.  Macular mottling is evident at an early age with attenuation and narrowing of the retinal arterioles.  The pigmentary changes are salt-and-pepper in appearance but there are also areas of RPE atrophy with relative sparing of the fovea.  Pigment clumping in the shape of bone spicules has been observed in the periphery.  Full field ERGs show generalized rod-cone dysfunction with scotopic function more affected.  OCT examination reveals a disruption of the outer retinal layers from the parafoveal region into the periphery.

Systemic Features: 

Early childhood psychomotor delays are evident in early childhood by the lack of fine motor and coordination skills along with learning difficulties.  Patients have facial dysmorphism with hypoplasia of the ala nasae, upslanting palpebral fissures, and malar hypoplasia.  The teeth are widely spaced and there is malocclusion.  Short stature is characteristic (fifth percentile).

Genetics

This disorder results from homozygosity of mutations in the RDH11 gene (14q24) encoding retinol dehydrogenase 11.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available for this condition but patients may benefit from correction of the malocclusion, special education classes, cataract removal, and low vision aids.  Physical therapy may also be helpful.

References
Article Title: 

Palmoplantar Keratoderma and Woolly Hair

Clinical Characteristics
Ocular Features: 

Eyebrows and eyelashes are sparse.

Systemic Features: 

Striate palmoplantar keratoderma, more pronounced in the soles, with leukonychia are present.  Scalp and body hair are sparse.  Woolly hair is present in some patients.  The toes may be somewhat rotated with a bulbous appearance distally.  Older individuals have more marked skin changes suggesting some progression.

Genetics

This autosomal recessive condition is the result of homozygous missense mutations in the KANK2 gene (19p13.2).  Eight patients in two families of Arab descent have been reported.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

Cataracts, Growth Hormone Deficiency, and Skeletal Dysplasia

Clinical Characteristics
Ocular Features: 

Lens opacities can be seen in infancy or childhood and may be congenital in onset.  Nystagmus has been noted in one patient. 

Systemic Features: 

There is considerable clinical heterogeneity in the phenotype.  Motor milestones may be slightly delayed.  Dysmorphic features in at least some individuals include bushy eyebrows, a prominent forehead, and a small mouth.  Thoracic scoliosis and genu valgum may be present.  Physical growth is reduced during infancy and childhood resulting in a short stature in adulthood.  Growth hormone and cortisol deficiency have been documented. Episodic hypoglycemia has been documented. The pituitary adenohypophysis appears atrophied on MRI.

Neurosensory hearing loss has been diagnosed in the first two years of life.  A distal sensory neuropathy with loss of pain, temperature and touch sensation may be present late in the first decade of life.  There are no cognitive deficits and patients can live independently.

Genetics

This is likely an autosomal recessive disorder resulting from homozygous or compound heterozygous mutations in the IARS2 gene (1q41).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Appropriate hormonal replacement therapy can be beneficial.  Individual skeletal surgery for scoliosis and hip dislocation should be considered.  Visually significant lens opacities may require surgery.

References
Article Title: 

Mutation in The Nuclear-Encoded Mitochondrial Isoleucyl-tRNA Synthetase IARS2 in Patients with Cataracts, Growth Hormone Deficiency with Short Stature, Partial Sensorineural Deafness, and Peripheral Neuropathy or with Leigh Syndrome

Schwartzentruber J, Buhas D, Majewski J, Sasarman F, Papillon-Cavanagh S, Thiffaut I, Sheldon KM, Massicotte C, Patry L, Simon M, Zare AS, McKernan KJ; FORGE Canada Consortium, Michaud J, Boles RG, Deal CL, Desilets V, Shoubridge EA, Samuels ME. Mutation in The Nuclear-Encoded Mitochondrial Isoleucyl-tRNA Synthetase IARS2 in Patients with Cataracts, Growth Hormone Deficiency with Short Stature, Partial Sensorineural Deafness, and Peripheral Neuropathy or with Leigh Syndrome. Hum Mutat. 2014 Nov;35(11):1285-9.

PubMed ID: 
25130867

Cataracts, Congenital, with Intellectual Disability

Clinical Characteristics
Ocular Features: 

Reported patients have bilateral posterior polar lens opacification, presumably present since birth.  No other ocular abnormalities are present.  Vision is stated to be normal following early cataract extractions.  No glaucoma has been detected while spectral OCT and electrophysiological studies had normal results.

Systemic Features: 

Psychomotor disabilities and developmental delays are present.  Walking does not occur until the age of about 2 years and speech is present by 5 years.  No dysmorphic features or other organ disease are present.  MRI studies of the brain are normal.

Genetics

This is an autosomal recessive disorder resulting from homozygous mutations in the STX3 gene (11q12.1).  It has been reported in three children in a consanguineous Tunisian family.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Surgical removal of the cataracts should be considered when visually significant.  Special education might be helpful as learning difficulties have been noted.

References
Article Title: 

Pigmentary Retinopathy with Congenital Sideroblastic Anemia

Clinical Characteristics
Ocular Features: 

The ocular phenotype has not been fully described, but several patients with a pigmentary retinopathy resembling retinitis pigmentosa have been reported.

Systemic Features: 

Patients present at a median age of two months with typically severe microcytic sideroblastic anemia. Median hemoglobin levels are 7.1 g/dl.  Lymphopenia and panhypogammaglobulinemia are usually present and many children have periodic febrile illnesses.  The number of CD19+ B cells is reduced.  Aminoaciduria, hypercalcinuria, and nephrocalcinosis have been observed.  Cardiomyopathy has been seen in several patients and may be responsible for the early demise.  Developmental delays may be severe with variable neurodegeneration features such as seizures, cerebellar symptoms, and sensorineural hearing loss.  Achievement of milestones is generally delayed.  Median survival is 4 years although one patient has lived to the age of 19 years.

Genetics

Homozygous mutations in TRNT1 (3p25.1) are responsible for this disorder.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Allogeneic bone marrow transplantation in one patient reversed the hematologic and immunologic anomalies although retinitis subsequently developed.

References
Article Title: 

Mutations in TRNT1 cause congenital sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD)

Chakraborty PK, Schmitz-Abe K, Kennedy EK, Mamady H, Naas T, Durie D, Campagna DR, Lau A, Sendamarai AK, Wiseman DH, May A, Jolles S, Connor P, Powell C, Heeney MM, Giardina PJ, Klaassen RJ, Kannengiesser C, Thuret I, Thompson AA, Marques L, Hughes S, Bonney DK, Bottomley SS, Wynn RF, Laxer RM, Minniti CP, Moppett J, Bordon V, Geraghty M, Joyce PB, Markianos K, Rudner AD, Holcik M, Fleming MD. Mutations in TRNT1 cause congenital sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD). Blood. 2014 Oct 30;124(18):2867-71.

PubMed ID: 
25193871

A novel syndrome of congenital sideroblastic anemia, B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD)

Wiseman DH, May A, Jolles S, Connor P, Powell C, Heeney MM, Giardina PJ, Klaassen RJ, Chakraborty P, Geraghty MT, Major-Cook N, Kannengiesser C, Thuret I, Thompson AA, Marques L, Hughes S, Bonney DK, Bottomley SS, Fleming MD, Wynn RF. A novel syndrome of congenital sideroblastic anemia, B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD). Blood. 2013 Jul 4;122(1):112-23.

PubMed ID: 
23553769

Neu-Laxova Syndrome 2

Clinical Characteristics
Ocular Features: 

The eyes appear prominent, an effect that is sometimes exaggerated by absent or malformed eyelids.

Systemic Features: 

Intrauterine growth retardation is common and infants are born with significant deformities including microcephaly, limb malformations, flexion deformities, ichthyosis, and edema of the hands and feet.   Brain malformations may be present as well.

Genetics

This disorder has a transmission pattern consistent with autosomal recessive inheritance.  Homozygous or compound heterozygous mutations in the PSAT1 gene (9q21.2) are responsible. 

This condition has similar features to Neu-Laxova syndrome 1 (256520) but is less severe and results from a different mutation.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available.

References
Article Title: 

Neu-laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway

Acuna-Hidalgo R, Schanze D, Kariminejad A, Nordgren A, Kariminejad MH, Conner P, Grigelioniene G, Nilsson D, Nordenskjold M, Wedell A, Freyer C, Wredenberg A, Wieczorek D, Gillessen-Kaesbach G, Kayserili H, Elcioglu N, Ghaderi-Sohi S, Goodarzi P, Setayesh H, van de Vorst M, Steehouwer M, Pfundt R, Krabichler B, Curry C, MacKenzie MG, Boycott KM, Gilissen C, Janecke AR, Hoischen A, Zenker M. Neu-laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway. Am J Hum Genet. 2014 Sep 4;95(3):285-93.

PubMed ID: 
25152457

Neu-Laxova Syndrome 1

Clinical Characteristics
Ocular Features: 

The globes are prominent, an appearance that is exaggerated sometimes by absence of the eyelids or ectropion.  The lashes may be absent in other patients.  Cloudy corneas and cataracts have been described.

Systemic Features: 

This is a lethal dysplasia-malformation syndrome in which some infants are stillborn while others do not live beyond a few days.  The placenta is often small and the umbilical cord is short.  Decreased fetal movements and polyhydramnios are often noted.  Microcephaly can be striking at birth but there is overall intrauterine growth retardation.  The skin is ichthyotic and dysplastic containing excess fatty tissue beneath the epidermis.  Digits are often small and may be fused (syndactyly).  There is generalized edema with ‘puffiness’ of the hands and feet.  The lungs are frequently underdeveloped and cardiac defects such as septal openings, patent ductus arteriosus and transposition of great vessels are common.  Males often have cryptorchidism while females have a bifid uterus and renal dysgenesis has been reported.

The face is dysmorphic with prominent globes (in spite of microphthalmia), the ears are large and malformed, the forehead is sloping, the nose is flattened and the jaw is small.  Some infants have a cleft lip and palate while the mouth is round and gaping.  The neck is usually short.

Severe brain malformations such as lissencephaly, cerebellar hypoplasia, and dysgenesis/agenesis of the corpus callosum are frequently present.

Genetics

This is an autosomal recessive disorder secondary to mutations in the PHGDH gene (1p12).

This condition has some clinical overlap with Neu-Laxova syndrome 2 (616038) but the latter is less severe and is caused by a different mutation.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available.

References
Article Title: 

Neu-laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway

Acuna-Hidalgo R, Schanze D, Kariminejad A, Nordgren A, Kariminejad MH, Conner P, Grigelioniene G, Nilsson D, Nordenskjold M, Wedell A, Freyer C, Wredenberg A, Wieczorek D, Gillessen-Kaesbach G, Kayserili H, Elcioglu N, Ghaderi-Sohi S, Goodarzi P, Setayesh H, van de Vorst M, Steehouwer M, Pfundt R, Krabichler B, Curry C, MacKenzie MG, Boycott KM, Gilissen C, Janecke AR, Hoischen A, Zenker M. Neu-laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway. Am J Hum Genet. 2014 Sep 4;95(3):285-93.

PubMed ID: 
25152457

Cerebral Atrophy, Autosomal Recessive

Clinical Characteristics
Ocular Features: 

Severe visual impairment is noted before one year of age when infants cease following objects in their environment.  Cortical visual impairment has been diagnosed although 'atrophic optic fundi' and hypotrophic optic nerves and fovea have also been described.  Nystagmus has been observed as well.

Systemic Features: 

Microcephaly relative to age norms is evident usually by 2 months of age and there is little subsequent growth of the skull.  Regression of developmental milestones is noted by 4 months of age with signs of irritability, akathisia, spasticity, visual impairment, seizures, and increased startle responses.  Sucking responses and eye-to-eye contact are usually lost by 6 months of age.  Repetitive body stiffening and extension of arms in older individuals consistent with seizure activity has been confirmed by EEG in at least one infant.  Imaging consistently reveals cerebral atrophy with ventriculomegaly and general loss of brain volume. Progressive muscle weakness is evident after about 1 year of age and oral feeding is impaired. There is complete lack of responsive interaction beyond irritability and agitation while motor function is limited to involuntary responses.  Two individuals have lived into the second decade of life.

Genetics

This condition has been described in 4 individuals who were products of consanquineous Amish couples.  Homozygous mutations in the TMPRSS4 gene (11q23.3), whose product is a serine transmembrane protease, seems to be responsible.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

Pages

Subscribe to RSS - autosomal recessive