autosomal recessive

Mitochondrial Short-Chain Enoyl-CoA Hydratase 1 Deficiency

Clinical Characteristics
Ocular Features: 

The ocular phenotype has not been thoroughly studied.  Nystagmus has been reported in several infants.

Systemic Features: 

Evidence of severe psychomotor retardation is evident at birth or shortly thereafter.  Neonatal hypotonia with a poor suck reflex and episodic apnea is evident.  Spasticity may become evident later.  Brain imaging shows T-weighted hyperintensity areas in the basal ganglia resembling Leigh syndrome lesions.  The corpus callosum appears thin.  Serum and CSF lactate is elevated and decreased activity of the pyruvate dehydrogenase complex is present.

Infants do not achieve normal developmental milestones such as speech or sitting unsupported and several have died early in childhood from cardiorespiratory failure, possibly related to a combined mitochondrial respiratory chain dysfunction.

Genetics

The transmission pattern in several families is consistent with autosomal recessive inheritance.  Compound heterozygous mutations have been found in the ECHS1 gene (10q26.3).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

CODAS Syndrome

Clinical Characteristics
Ocular Features: 

Dense nuclear cataracts can be seen by six months of age.  Some patients have ptosis. The fundi have been described as normal at one month of age in a single infant but vision was described at the 20/200 level at 2 years of age.  Cataracts noted at 4 months had been removed.

Systemic Features: 

Patients have multiple severe systemic abnormalities.  There is generalized developmental delay along with mild microcephaly and hypotonia.   The forehead is often broad while the face appears flattened with anteverted nares, a flat nasal bridge, a short philtrum, low-set and crumpled ears.  Infants may have an inadequate upper respiratory apparatus with atrophic vocal cords and some die of laryngeal obstruction in the first days of life.  Sialorrhea and difficulty swallowing have been noted.  Mild to moderate neurosensory hearing loss is often present but there may also be a conduction component to this. 

Brain imaging has revealed large ventricles, with subcortical hypomyelination, a thin corpus callosum, and prominent cortical sulci.  The vertebrae may have coronal clefts and scoliosis often develops. Generalized metaphyseal dysplasia and delayed bone age are usually present.  The anus may be imperforate and a rectovaginal fistula and cryptorchidism have been reported.  Long bones may be malformed as well and most patients are short in stature. Delayed dentition, enamel dysplasia, and abnormal cusp morphology are often present.  Cardiac septal defects may be seen.

Genetics

Homozygous mutations in LONF1 (19p13.3) segregate with the phenotype.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

There is no general treatment available and infants sometimes die from laryngeal obstruction in the first days of life.   Individual anomalies may be surgically correctable in selected individuals.  Occasional infants are stillborn but one patient died an accidental death at 14 years of age. 

References
Article Title: 

CODAS syndrome is associated with mutations of LONP1, encoding mitochondrial AAA+ Lon protease

Strauss KA, Jinks RN, Puffenberger EG, Venkatesh S, Singh K, Cheng I, Mikita N, Thilagavathi J, Lee J, Sarafianos S, Benkert A, Koehler A, Zhu A, Trovillion V, McGlincy M, Morlet T, Deardorff M, Innes AM, Prasad C, Chudley AE, Lee IN, Suzuki CK. CODAS syndrome is associated with mutations of LONP1, encoding mitochondrial AAA+ Lon protease. Am J Hum Genet. 2015 Jan 8;96(1):121-35.

PubMed ID: 
25574826

Macular Dystrophy with Central Cone Involvement

Clinical Characteristics
Ocular Features: 

This is primarily a cone dystrophy but there is evidence of some rod damage in older patients.  A mild decrease in central acuity is noted by individuals in the third to sixth decades.  Slight pigmentary changes and color vision abnormalities can be documented with the onset of these symptoms and a bull's eye maculopathy and severe atrophy of the central fovea may be present. An enlarging central scotoma with normal periphery can sometimes be identified.  Other patients have an atrophic appearance to the peripapillary area with a pale optic disc.  ERG responses to full-field testing are normal but multifocal studies reveal severely reduced central responses.

Systemic Features: 

No systemic abnormalities have been reported.

Genetics

Compound heterozygosity for a missense mutation and a nonsense mutation in the MFSD8 gene (4q28.2) has been found among members of a Dutch sibship suggesting autosomal recessive inheritance.       

The same mutant gene has been identified in some patients with late infantile or early juvenile onset lysosomal storage disease known as neuronal ceroid lipofuscinoses (610951) in which there may be optic atrophy, attenuated retinal vessels, a pigmentary retinopathy, and severe vision loss.   However, it is of note that no members of the Dutch family with the macular cone dystrophy described here had extraocular manifestations.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

Filippi Syndrome

Clinical Characteristics
Ocular Features: 

The ocular features have not been fully described.  The most consistent features are long eyelashes, thick (bushy) eyebrows, and 'visual disturbance'.  Most individuals have a facial dysmorphism which includes a broad nasal base suggestive of hypertelorism.  Optic atrophy and proptosis have been noted. 

Systemic Features: 

Intrauterine growth retardation is sometimes seen.  Microcephaly, short stature, syndactyly, intellectual disability (often labeled mental retardation), and a dysmorphic face are characteristic.  Some individuals have cryptorchidism, seizures, and ectodermal abnormalities including nail hypoplasia, hirsutism, and microdontia.  Mental and physical delays are common.  The syndactyly usually involves only soft tissue between toes 2, 3, and 4 and fingers 3 and 4 accompanied by clinodactyly of the 5th finger.  Polydactyly is sometimes present while radiologically the radial head may show evidence of hypoplasia. 

Genetics

Homozygosity or compound heterozygosity in the CKAP2L gene (2q13) segregates with this phenotype. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

Mutations in CKAP2L, the human homolog of the mouse Radmis gene, cause Filippi syndrome

Hussain MS, Battaglia A, Szczepanski S, Kaygusuz E, Toliat MR, Sakakibara S, Altmuller J, Thiele H, Nurnberg G, Moosa S, Yigit G, Beleggia F, Tinschert S, Clayton-Smith J, Vasudevan P, Urquhart JE, Donnai D, Fryer A, Percin F, Brancati F, Dobbie A, Smigiel R, Gillessen-Kaesbach G, Wollnik B, Noegel AA, Newman WG, Nurnberg P. Mutations in CKAP2L, the human homolog of the mouse Radmis gene, cause Filippi syndrome. Am J Hum Genet. 2014 Nov 6;95(5):622-32.

PubMed ID: 
25439729

Fibrosis of Extraocular Muscles, CFEOM5

Clinical Characteristics
Ocular Features: 

This type of congenital fibrosis of extraocular muscles is sometimes called a congenital cranial dysinnervation disorder.  Ptosis is of congenital onset while the nature of the strabismus is variable but bilateral.  One sib with this disorder had Duane retraction syndrome.

Systemic Features: 

No systemic features have been reported.

Genetics

Homozygosity or compound heterozygosity of mutations in the COL25A1 gene is responsible for this autosomal recessive condition. 

Other nonsyndromal forms of congenital fibrosis of extraocular muscles include: CFEOM1 (135700), CFEOM2 (602078), CFEOM3C (609384), and CFEOM with synergistic divergence (609612).  See also Tukel CFEOM syndrome (609428).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No specific treatment has been reported.  However, in selected patients the ocular deviation can be at least partially corrected with strabismus surgery.  Surgery for ptosis should also be considered.

References
Article Title: 

Retinal Dystrophy, Newfoundland Type

Clinical Characteristics
Ocular Features: 

There is considerable clinical heterogeneity, mostly age-dependent.  Night blindness can occur in early childhood but usually later even though scotopic responses can be undetectable in the first decade of life while photopic responses are reduced on the ERG at all ages.  Both rod and cone responses may be extinguished in later life.  Visual acuity can be decreased beginning in early childhood and legal blindness usually occurs by the second or third decade of life.  However, the loss of vision continues to progress and severe vision loss to finger-counting may be present in older individuals.  A scallop-bordered lacunar atrophy may be seen in the midperiphery.  The macula is only mildly involved by clinical examination although central retinal thinning is seen in all cases.  Dyschromatopsia is mild early and usually becomes more severe.  The visual fields are moderately to severely constricted although in younger individuals a typical ring scotoma is present.  The peripheral retina contains ‘white dots’ and often resembles the retinal changes seen in retinitis punctate albescens.

Systemic Features: 

None reported.

Genetics

Homozygous mutations in the RLBP1 gene (15q26.1) are responsible for this disorder.  Homozygous mutations in RLBP1 have also been found among patients with fundus albipunctatus (136880), retinitis punctata albescens, and in Bothnia type retinal dystrophy (607475),

NFRCD clinically resembles Bothnia type retinal dystrophy (607475) which likewise results from mutations in the RLBP1 gene but the maculae appear normal or have only a mild ‘beaten-bronze’ atrophy.

See Flecked Retina entry for somewhat similar conditions.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

Perrault Syndrome

Clinical Characteristics
Ocular Features: 

Nystagmus and limited extraocular movements are usually present in PRLTS1.  Optic atrophy and poor visual acuity have been reported. Ptosis may be present.  The clinical manifestations are variable among and within the types.  Rod dysfunction and ‘retinal atrophy’ were reported in one patient.  The majority of patients have had only limited ocular evaluations.

Systemic Features: 

This is a sex-influenced condition in which both sexes have a sensorineural hearing deficit and neurodegenerative disease (both central and peripheral) but only the females have gonadal dysgenesis.  Motor development is often delayed and ataxia along with a peripheral sensory neuropathy and a variable degree of limb weakness can be present.  Learning difficulties, cognitive decline, and frank mental retardation are frequently described.  The cerebellum may be atrophic.

There is considerable variability in the clinical signs.

Genetics

The combination of hearing loss in males and females, ovarian dysgenesis in females, and variable neurologic signs including external ophthalmoplegia and sometimes optic atrophy is known as Perrault syndrome.  The ocular movement abnormalities are seen primarily in PRLTS1

At least 5 unique mutations have been found accounting for types PRLTS1-5.  PRLTS1 (233400) results from mutations in HSD17B4 (5q23.1), type PRLTS2 (614926) is caused by mutations in the HARS2 gene, PPRLTS3 (614129) by mutations in the CLPP gene, PRLTS4 (615300) by mutations in the LARS2 gene, and PRLTS5 (616138) by mutations in C10orf2 (listed in this database as External Ophthalmoplegia, C10orf2, and mtDNA mutations,.

The inheritance pattern among different types may be autosomal recessive or autosomal dominant.

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

No effective treatment is known.

References
Article Title: 

Perrault syndrome: further evidence for genetic heterogeneity

Jenkinson EM, Clayton-Smith J, Mehta S, Bennett C, Reardon W, Green A, Pearce SH, De Michele G, Conway GS, Cilliers D, Moreton N, Davis JR, Trump D, Newman WG. Perrault syndrome: further evidence for genetic heterogeneity. J Neurol. 2012 May;259(5):974-6.

PubMed ID: 
22037954

Perrault syndrome in sisters

McCarthy DJ, Opitz JM. Perrault syndrome in sisters. Am J Med Genet. 1985 Nov;22(3):629-31.

PubMed ID: 
4061497

Epileptic Encephalopathy, Early Infantile 28

Clinical Characteristics
Ocular Features: 

Infants with this lethal neuropathy often have minimal or absent eye contact from birth.  Responses to visual stimuli are often but not always absent.  Optic atrophy may be present and the ERG is abnormal in some individuals. The retinas may have "abnormal" pigmentation while scotopic and photopic flash ERG responses are reduced as are visual evoked potentials indicating delayed visual maturation with severe macular and optic nerve dysfunction. 

Systemic Features: 

Seizures begin within weeks after birth and are resistant to pharmacological treatment.  There is no spontaneous motility and little or no psychomotor development.  Normal developmental milestones are usually not achieved.  Spasticity and hyperreflexia are often present but some newborn infants are hypotonic.  MRI imaging reveals cortical atrophy with hippocampal hypoplasia and a hypoplastic corpus callosum. Progressive microcephaly has been described.

Infants generally do not live beyond two years of age and may die within weeks or a few months. Pulmonary dysfunction can be a significant cause of morbidity. 

Genetics

The transmission pattern is consistent with autosomal recessive inheritance.  Homozygous and compound heterozygous mutations in the WWOX gene (16q23) have been found in several families.

Among the limited number of patients reported, at least two with compound heterozygous mutations had normal brain imaging, appropriate visual responses, and some ability to interact with their environment.  Profound psychomotor delays, however, remained.  Hypotonia replaced spasticity as a neurological feature in some infants.

The same gene is mutated in autosomal recessive spinocerebellar ataxia 12 (614322), a less severe condition in which gaze-evoked nystagmus occurs.

Other forms of epileptic encephalopathy have been reported (see 617105, 617106, and 617113) including Early Onset Epileptic Encephalopathy 48 (617276).  For an autosomal dominant form of epileptic encephalopathy in this database, see Epileptic Encephalopathy, Early Onset 47 (617166).

 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is known for this condition.

References
Article Title: 

WWOX-related encephalopathies: delineation of the phenotypical spectrum and emerging genotype-phenotype correlation

Mignot C, Lambert L, Pasquier L, Bienvenu T, Delahaye-Duriez A, Keren B, Lefranc J, Saunier A, Allou L, Roth V, Valduga M, Moustaine A, Auvin S, Barrey C, Chantot-Bastaraud S, Lebrun N, Moutard ML, Nougues MC, Vermersch AI, Heron B, Pipiras E, Heron D, Olivier-Faivre L, Gueant JL, Jonveaux P, Philippe C. WWOX-related encephalopathies: delineation of the phenotypical spectrum and emerging genotype-phenotype correlation. J Med Genet. 2015 Jan;52(1):61-70..

PubMed ID: 
25411445

Chorioretinopathy with Microcephaly 2

Clinical Characteristics
Ocular Features: 

Microphthalmia and microcornea are seen in most individuals and one patient had unilateral clinical anophthalmia. Hyperopia and cataracts may be present. Nystagmus is common.  One patient had a corneal opacity.  The chorioretinopathy has not been described beyond evidence of the maculopathy, attenuated retinal vessels, and occasionally hyperpigmented zones.  The ERG is either not recordable or consistent with a severe rod-cone dystrophy.  Vitreous inclusions and a 'vitreoretinal dystrophy' with falciform retinal folds were noted in several patients.  A traction detachment was present in one and bilateral serous detachments were noted in another.

Systemic Features: 

Patients have mild to severe microcephaly (up to -15 SD) with psychomotor delays.  Profound intellectual disability is a consistent feature.  Physical growth is retarded and patients have shortness of stature.  Most patients are unable to sit, stand, or walk unassisted.  One patient died at 5.5 years of age while another was alive at 20 years of age.  Rare patients may have hearing loss and seizures.

Scoliosis, kyphosis, and lordosis may be seen while  other skeletal malformations seem to occur sporadically e.g., triphalangeal thumbs, brachydactyly, postaxial polydactyly, and restricted large joint motion.  

The forehead slopes markedly.  Neuroimaging shows a consistent reduction in cortex size with simple gyral folding while the cerebellum and the brain stem are also small.  Subarachnoid cysts have been noted in several patients and the corpus callosum may be short or otherwise malformed.

Genetics

Homozygous mutations in the PLK4 gene (4q28.2) segregate with this condition.  Its product localizes to centrioles and plays a central role in centriole duplication.

For a somewhat similar condition but without the sloping forhead see Chorioretinoapathy with Microcephaly 1 (251270) but resulting from homozygous mutations in TUBGCP6.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is know.

References
Article Title: 

Mutations in PLK4, encoding a master regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy

Martin CA, Ahmad I, Klingseisen A, Hussain MS, Bicknell LS, Leitch A, Nurnberg G, Toliat MR, Murray JE, Hunt D, Khan F, Ali Z, Tinschert S, Ding J, Keith C, Harley ME, Heyn P, Muller R, Hoffmann I, Daire VC, Dollfus H, Dupuis L, Bashamboo A, McElreavey K, Kariminejad A, Mendoza-Londono R, Moore AT, Saggar A, Schlechter C, Weleber R, Thiele H, Altmuller J, Hohne W, Hurles ME, Noegel AA, Baig SM, Nurnberg P, Jackson AP. Mutations in PLK4, encoding a master regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy. Nat Genet. 2014 Dec;46(12):1283-92.

PubMed ID: 
25344692

Spinocerebellar Ataxia 18

Clinical Characteristics
Ocular Features: 

Ocular signs in SCAR18 include nystagmus, oculomotor apraxia, and optic atrophy.  The nystagmus may be rotatory or horizontal and can be gaze-evoked.  Some patients have intermittent and tonic upgaze.  Visual acuity has not been reported.

Systemic Features: 

Patients are developmentally delayed and have intellectual disability.  These features do not seem to be progressive.  Ataxia, both truncal and cerebellar, is present.  Mobility is impaired from early childhood and eventually requires assistance.   Joint contractures sometimes develop and patients can be wheelchair-bound by the second decade.  Dysarthric speech is common.  No dysmorphic facial features are present.

Brain imaging shows progressive cerebellar and sometimes cerebral atrophy.

Genetics

This autosomal recessive disorder results from homozygous deletions in the GRID2 gene (4q22).  This gene codes for a subunit of the glutamate receptor channel and is thought to be selectively expressed in the Purkinje cells of the cerebellum.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.  However, physical therapy, assistive devices for mobility, and low vision aids may be helpful.

References
Article Title: 

Pages

Subscribe to RSS - autosomal recessive