bulbous nose

Hypotonia, Infantile, with Psychomotor Retardation And Characteristic Facies 2

Clinical Characteristics
Ocular Features: 

Anomalies of periocular structures are part of the characteristic facial morphology.  The lid fissures slant downward and epicanthal folds are with ptosis are generally present.  Strabismus and nystagmus are characteristic features.

Systemic Features: 

This is a severe congenital neurodevelopmental disorder with global delay, hypotonia, and characteristic facies.  It is usually present at birth and soon manifest as a profound intellectual delay.  Most patients do not develop speech or independent motor skills.  Feeding difficulties are evident early and often require gastric tube placement for nutrition.  Failure to thrive is common.   Most patients have seizures of a tonic-clonic or atonic type which may be controlled with medication. 

Microcephaly, brachycephaly, plagiocephaly, and brachycephaly have been described.  A high forehead with frontal bossing, facial hypotonia, triangular facies have been described.  The ears are low-set and posteriorly rotated.  The upper lip is often thin and the mouth is commonly open.  The neck appears short, the nose is bulbous while the nasal bridge is prominent and the nares may be anteverted.

Brain imaging is normal in some patients but there is evidence of generalized cerebral atrophy, with a thin corpus callosum and decreased myelination in others.  Variable features such as scoliosis, hip contractures, muscle wasting, and dyskinesias are sometimes seen.

Genetics

This disorder is caused by homozygous or compound heterozygous mutations in the UNC80 gene (2q34).  

For somewhat similar disorders see IHPRF1 (615419) and IHPRF3 (616900).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Biallelic Mutations in UNC80 Cause Persistent Hypotonia, Encephalopathy, Growth Retardation, and Severe Intellectual Disability

Stray-Pedersen A, Cobben JM, Prescott TE, Lee S, Cang C, Aranda K, Ahmed S, Alders M, Gerstner T, Aslaksen K, Tetreault M, Qin W, Hartley T, Jhangiani SN, Muzny DM, Tarailo-Graovac M, van Karnebeek CD; Care4Rare Canada Consortium; Baylor-Hopkins Center for Mendelian Genomics, Lupski JR, Ren D, Yoon G. Biallelic Mutations in UNC80 Cause Persistent Hypotonia, Encephalopathy, Growth Retardation, and Severe Intellectual Disability. Am J Hum Genet. 2016 Jan 7;98(1):202-9.

PubMed ID: 
26708751

UNC80 mutation causes a syndrome of hypotonia, severe intellectual disability, dyskinesia and dysmorphism, similar to that caused by mutations in its interacting cation channel NALCN

Perez Y, Kadir R, Volodarsky M, Noyman I, Flusser H, Shorer Z, Gradstein L, Birnbaum RY, Birk OS. UNC80 mutation causes a syndrome of hypotonia, severe intellectual disability, dyskinesia and dysmorphism, similar to that caused by mutations in its interacting cation channel NALCN. J Med Genet. 2016 Jun;53(6):397-402.

PubMed ID: 
26545877

Kahrizi Syndrome

Clinical Characteristics
Ocular Features: 

In an Iranian family with 3 affected sibs, cataracts (not further characterized) were noted in late adolescence.  Iris colobomas, unilateral in one sib and bilateral in another, were present.

Systemic Features: 

Children have severe psychomotor delays from birth and have severe mental retardation.  Speech and normal motor function never develop fully.  Thoracic kyphosis begins in late childhood and contractures develop in the elbows and knees.  A CAT scan in one patient revealed only normal findings.  Facial features have been described as ‘coarse’ with prominent lips, broad nasal bridge, and a bulbous nose.  Some individuals with this condition have lived into the 5th decade.  Ataxia is usually present although the cerebellum may be normal on MRI.

Genetics

This is an autosomal recessive condition resulting from homozygous mutations in the SRD5A3 gene (4q12).

Kahrizi syndrome is allelic to CDG1Q, or congenital disorder of glycosylation type Iq (612379), an autosomal recessive disorder with mutations in the same gene and a partially overlapping ocular phenotype.

At least 10 families have been reported with mutations in this gene considered important to glycosylation.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No specific treatment is available for this condition although physical therapy and cataract surgery might be considered in specific individuals.

References
Article Title: 

SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder

Cantagrel V, Lefeber DJ, Ng BG, Guan Z, Silhavy JL, Bielas SL, Lehle L, Hombauer H, Adamowicz M, Swiezewska E, De Brouwer AP, Bl?omel P, Sykut-Cegielska J, Houliston S, Swistun D, Ali BR, Dobyns WB, Babovic-Vuksanovic D, van Bokhoven H, Wevers RA, Raetz CR, Freeze HH, Morava E, Al-Gazali L, Gleeson JG. SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder. Cell. 2010 Jul 23;142(2):203-17.

PubMed ID: 
20637498

Alagille Syndrome

Clinical Characteristics
Ocular Features: 

The ocular findings in Alagille syndrome are often of little functional significance but can be sufficient to suggest the diagnosis without further study of the systemic features.  Posterior embryotoxon is found in 95% of individuals while iris abnormalities such as ectopic pupils are seen in 45%, abnormal fundus pigmentation is common (hypopigmentation in 57%, diffuse pigment speckling in 33%), and optic disc anomalies have been reported in 76%.  One study found that 90% of individuals have optic disk drusen by ultrasonography.  The anterior chamber anomalies are considered by some to be characteristic of Axenfeld anomaly.  The presence of these ocular findings in children with cholestasis should suggest Alagille syndrome.  Ocular examination of the parents can also be helpful in this autosomal dominant disorder as some of the same changes are present in one parent in more than a third of cases.

Systemic Features: 

A variety of  systemic features, some of them serious malformations, occur in Alagille syndrome.  Among the most common is a partial intrahepatic biliary atresia leading to cholestasis and jaundice.  Skeletal malformations include 'butterfly' vertebrae, shortened digits, short stature, a broad forehead, and a pointed chin.  The tip of the nose may appear bulbous.  These features have suggested to some that there is a characteristic facial dysmorphology.  Vascular malformations are common including aneurysms affecting major vessels, valvular insufficiency, coarctation of the aorta, and stenosis and these are often responsible for the most serious health problems.  In fact, vascular events have been reported to be responsible for mortality in 34% of one cohort.  Chronic renal insufficiency develops in a minority of patients.  This disorder should always be considered in children with cholestasis, especially when accompanied by cystic kidney disease.  Brain MRIs may show diffuse or focal hyperintensity of white matter even in the absence of hepatic encephalopathy.

Genetics

This is an autosomal dominant condition secondary to various mutations in the JAG1 gene located on chromosome 20 (20p12).  Penetrance is nearly 100% but there is considerable variation in expression.  A far less common variant of this disorder, ALGS2 (610205), is caused by a mutation in the NOTCH2 gene (1p13-p11).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No cure is available but individual organ disease may be treatable.  The ocular abnormalities generally do not cause vision difficulties.

Reversible of white matter changes has been noted in a single child following liver transplantation.

 

References
Article Title: 

CT-defined phenotype of pulmonary artery

Rodriguez RM, Feinstein JA, Chan FP. CT-defined phenotype of pulmonary artery
stenoses in Alagille syndrome
. Pediatr Radiol. 2016 Apr 4. [Epub ahead of print].

PubMed ID: 
27041277

Alagille syndrome: clinical and ocular pathognomonic features

El-Koofy NM, El-Mahdy R, Fahmy ME, El-Hennawy A, Farag MY, El-Karaksy HM. Alagille syndrome: clinical and ocular pathognomonic features. Eur J Ophthalmol. 2010 Jul 28. pii: 192165A5-8631-4C06-9C47-9AD63688B02A. [Epub ahead of print]

PubMed ID: 
20677167

Ocular abnormalities in Alagille syndrome

Hingorani M, Nischal KK, Davies A, Bentley C, Vivian A, Baker AJ, Mieli-Vergani G, Bird AC, Aclimandos WA. Ocular abnormalities in Alagille syndrome. Ophthalmology. 1999 Feb;106(2):330-7.

PubMed ID: 
9951486
Subscribe to RSS - bulbous nose