renal failure

Short-Rib Thoracic Dysplasia 9

Clinical Characteristics
Ocular Features: 

A pigmentary retinopathy resembling retinitis pigmentosa is present in the majority of individuals.  Reduced acuity is likely responsible for the associated nystagmus and occasional strabismus.  Night blindness is a feature although the age of onset is unknown.  Visual acuity is decreased in the first decade but at least one patient at age 40 years still had vision of 20/40-20/50.  The ERG shows decreased scotopic and photopic responses as early as 12 years of age.  The retinopathy has been described as an atypical nonpigmented retinal degeneration in the peripheral retina. However, bone-spicule pigmentary deposits have been noted.  The retinal disease is progressive. 

Systemic Features: 

The LFT140 mutation has widespread effects, impacting the kidney, liver and skeletal systems.  The thorax is shortened, while the ribs are abnormally short and may result in respiratory difficulties, recurrent infections, and an early demise.  The middle phalanges of the hands and feet often have cone-shaped epiphyses, especially notable in childhood and leading to brachydactyly.  The long bones are often shortened as well.  The femoral neck can be short while the femoral epiphyses are often flattened.  Microcephaly has been reported in several individuals.

The liver may be enlarged and become fibrotic.  The kidneys often are cystic and histologically may have sclerosing glomerulonephropathy.  Kidney disease has an onset in the first decade and its progression often defines the survival prognosis.  Renal transplantation can be lifesaving when nephronophthisis develops.  Psychomotor delays have been reported but are uncommon. 

Genetics

Homozygous or compound heterozygous mutations in the IFT140 gene (16p13.3) have been identified.  However, there is some genetic heterogeneity since several patients having the typical phenotype have been reported with only heterozygous mutations.

This may be the same condition as Retinitis Pigmentosa 80 (617781) in which the same mutation occurs. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

There is no treatment for the general disease.  Renal and pulmonary function needs to be monitored with intervention as needed.  Some patients have benefitted from renal transplantation.

References
Article Title: 

Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney Disease

Schmidts M, Frank V, Eisenberger T, Al Turki S, Bizet AA, Antony D, Rix S, Decker C, Bachmann N, Bald M, Vinke T, Toenshoff B, Di Donato N, Neuhann T, Hartley JL, Maher ER, Bogdanovic R, Peco-Antic A, Mache C, Hurles ME, Joksic I, Guc-Scekic M, Dobricic J, Brankovic-Magic M, Bolz HJ, Pazour GJ, Beales PL, Scambler PJ, Saunier S, Mitchison HM, Bergmann C. Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney Disease. Hum Mutat. 2013 May;34(5):714-24.

PubMed ID: 
23418020

Mainzer-Saldino syndrome is a ciliopathy caused by IFT140 mutations

Perrault I, Saunier S, Hanein S, Filhol E, Bizet AA, Collins F, Salih MA, Gerber S, Delphin N, Bigot K, Orssaud C, Silva E, Baudouin V, Oud MM, Shannon N, Le Merrer M, Roche O, Pietrement C, Goumid J, Baumann C, Bole-Feysot C, Nitschke P, Zahrate M, Beales P, Arts HH, Munnich A, Kaplan J, Antignac C, Cormier-Daire V, Rozet JM. Mainzer-Saldino syndrome is a ciliopathy caused by IFT140 mutations. Am J Hum Genet. 2012 May 4;90(5):864-70.

PubMed ID: 
22503633

Alström Syndrome

Clinical Characteristics
Ocular Features: 

Progressive failure of rods and cones begins in the first year of life and inevitably leads to blindness.  Central vision is lost first and nystagmus in early childhood results.   Photophobia can be evident in the first year of life.  Early ERGs show severe impairment of cone responses with little or no rod dysfunction.  In the second and third decades all rod and cone responses are extinguished.  Vision can be less than 20/400 by the age of 10 years and usually all light perception is lost by the beginning of the third decade.  Pale optic nerves with retinal arteriorlar narrowing and posterior subcapsular cataracts have been seen.

Systemic Features: 

This is a multisystem disease with onset in the first year of life.  Infants may have a normal birth weight but develop truncal obesity in the first year.  Hearing loss is evident in the first decade.  Insulin resistant type 2 diabetes mellitus with hyperinsulinemia often occurs in childhood and may be accompanied by hypothyroidism and hypogonadotropic hypogonadism.  Acanthosis nigricans and some degree of pulmonary dysfunction are common.  The majority of individuals (70%) develop restrictive or dilated cardiomyopathy, many in the first months of life, resulting in cardiac failure.  The liver may become cirrhotic and renal failure occurs late.  Intelligence is usually normal but many patients (25-30%) have early delays in their developmental milestones perhaps secondary to growth hormone deficiency which has been reported (98% are short in stature).  Lifespan is short and many die in childhood.  Few live beyond the age of 40 years.

Alstrom syndrome has some similarities to Bardet-Biedl syndrome (209900) but differs in the absence of mental deficiency and polydactyly.

Genetics

This is an autosomal recessive disorder resulting from homozygous mutations in the ALMS1 gene on chromosome 2 (2p13).  The ALMS1 protein product is found in many cells throughout the body and is located in centrosomes and the base of cilia.  Its function is unknown.

More than 320 mutations have been reported. However, many cases remain in which no mutation has been found suggesting additional genetic heterogeneity remains.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available for the basic disease.

References
Article Title: 

Alström Syndrome: Mutation Spectrum of ALMS1

Marshall JD, Muller J, Collin GB, Milan G, Kingsmore SF, Dinwiddie D, Farrow EG, Miller NA, Favaretto F, Maffei P, Dollfus H, Vettor R, Naggert JK. Alstrom Syndrome: Mutation Spectrum of ALMS1. Hum Mutat. 2015 Apr 2. doi: 10.1002/humu.22796. [Epub ahead of print].

PubMed ID: 
25846608

Alström syndrome

Marshall JD, Beck S, Maffei P, Naggert JK. Alstrom syndrome. Eur J Hum Genet. 2007 Dec;15(12):1193-202.

PubMed ID: 
17940554

Pearson Marrow-Pancreas Syndrome

Clinical Characteristics
Ocular Features: 

Although systemic disease is usually evident during infancy, ocular symptoms such as ptosis and ophthalmoplegia may not be apparent until adulthood in those that survive.  The ocular myopathy in adults can resemble Kearns-Sayre syndrome (530000) as the result of a phenotypic shift from a predominantly hematopoietic disorder to a mitochondrial myopathy.  Bilateral zonular cataracts and strabismus have been reported in a 3 year old male.  A midperiphery pigmentary retinopathy has been observed.  Endothelial cell failure leads to corneal edema. 

Systemic Features: 

Low birth weight, failure to thrive, hypoplastic anemia and exocrine pancreatic dysfunction are often seen in infancy.  Precursor cells in the marrow show typical vacuolization. Malabsorption and insulin-dependent diabetes often develop.  The pancreas and bone marrow may become fibrotic.  Patients with the classic syndrome as a child can develop features of the Kearns-Sayre syndrome if they survive childhood.  Progressive muscle weakness in pharyngeal, facial, neck, and limb muscles is sometimes seen in older individuals and muscle biopsy reveals ragged-red fibers characteristic of mitochondrial disease.  Some patients have an organic aciduria and others develop hepatic failure with elevated transaminase, bilirubin and lipid levels.  Kidney damage results in Fanconi syndrome.  Young children may recover from the refractory anemia eventually but metabolic acidosis with life-threatening lactic acidosis is a constant threat and responsible for many childhood deaths.

Genetics

Deletions in mtDNA involving numerous genes are responsible for this condition.  As a result, it is maternally transmitted but somewhat inconsistently due to mitochondrial heteroplasmy.  Both sexes are affected.  The irregular size of the mtDNA deletions and the tissue distribution of affected mitochondria results in considerable variation in clinical expression.  Defective oxidative phosphorylation seems to be the underlying cause of many of the signs and symptoms.

Treatment
Treatment Options: 

This multisystem disease requires careful monitoring throughout life.  Blood transfusions may be required and careful attention needs to be given to nutrition and metabolic dysfunction.  A few patients have required insulin.  In spite of vigorous treatment of electrolyte imbalances, correction of acidosis, and hormonal supplements, many patients do not survive beyond childhood.  Organ failure requires individualized treatment.

References
Article Title: 

Pearson Syndrome

Farruggia P, Di Marco F, Dufour C. Pearson Syndrome. Expert Rev Hematol. 2018 Jan 16. doi: 10.1080/17474086.2018.1426454. [Epub ahead of print].

PubMed ID: 
29337599

Hyperoxaluria, Primary, Type I

Clinical Characteristics
Ocular Features: 

About 30% of patients with type I develop retinopathy and about half of those have a diffuse optic atrophy.  Oxalate crystal deposition can cause a 'fleck retina' picture sometimes described as a crystalline retinopathy.  There is wide variation in the retinal phenotype.  Retinal toxicity leads to early and progressive vision loss.  The RPE may respond with hyperpigmentation in the form of 'ringlets' in the posterior pole.  Retinal fibrosis has been described.  Some patients develop choroidal neovascularization.

Evaluation using EDI-OCT shows progressive deposition of oxalate crystals throughout the retina, pigment epiithelium, and choroid.

Systemic Features: 

The onset of this disease can occur any time from infancy to 25 years of age.  Failure to thrive can be a presenting sign in infants.  Most patients have glycolic aciduria and hyperoxaluria as the result of failure to transaminate glyoxylate to form glycine.  The result is deposition of insoluble oxalate crystals in various body tissues with nephrolithiasis and nephrocalcinosis often early signs.  Neurologic, cardiac, vascular, and kidney disease is often the result although oxalate crystals can be found throughout the body.  Arteriole occlusive disease may lead to gangrene, Raynaud phenomena, acrocyanosis and intermittent claudication.  Renal failure is common. 

Genetics

Hyperoxaluria type I is an autosomal recessive disorder resulting from a mutation in the alanine-glyoxylate aminotransferase gene (AGXT) located at 2q36-q37.  Failure of this liver peroxisomal enzyme to transaminate glyoxylate results in oxidation of this molecule to form oxalate.

Hyperoxaluria type II (260000) is caused by mutations in the GRHPR gene (9cen) and type III (613616) by mutations in DHDPSL (HOGA1) (10q24.2).  Urolithiasis is the only clinical feature in these types. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Some patients benefit from oral pyridoxine (B6) treatment in type I hyperoxaluria.  Renal transplantation by itself is only temporarily helpful since the enzymatic defect remains and the donor tissue becomes damaged as well.  Combined renal-liver transplantation should be considered instead because it corrects the primary metabolic error and can even reverse the accumulation of oxalate crystals. 

References
Article Title: 

Primary hyperoxaluria in infants

Jellouli M, Ferjani M, Abidi K, Zarrouk C, Naija O, Abdelmoula J, Gargah T. Primary hyperoxaluria in infants. Saudi J Kidney Dis Transpl. 2016 May-Jun;27(3):526-32.

PubMed ID: 
27215245

Primary hyperoxaluria

Cochat P, Rumsby G. Primary hyperoxaluria. N Engl J Med. 2013 Aug 15;369(7):649-58. Review.

PubMed ID: 
23944302

Pierson Syndrome

Clinical Characteristics
Ocular Features: 

Microcoria is the most consistent ocular feature but is not present in some families.  It is congenital and sometimes seen with iris hypoplasia.  Glaucoma and lens opacities (including posterior lenticonus sometimes) are present in one-fourth of patients.  Corneal size varies with some patients having apparent macrocornea which can lead to the mistaken diagnosis of buphthalmos.  Pigment mottling and clumping is common in the retina and the ERG can show changes characteristic of cone-rod dystrophy.  Retinal thinning is often present as well.  Non-rhegmatogenous retinal detachments occur in 24% of patients and optic atrophy is seen in some individuals.  There is considerable interocular, intrafamilial, and interfamilial variability in these signs. 

Systemic Features: 

The primary and most consistent systemic problem is progressive renal disease. Congenital nephrotic syndrome with proteinuria, hypoalbuminemia and hypertension is characteristic.  Renal failure eventually occurs although the rate of progression varies. Most patients require a renal transplant for end-stage kidney disease in the first decade of life.  Kidney histology shows glomerulosclerosis, peritubular scarring, and diffuse mesangial sclerosis.  Hypotonia and muscle weakness are sometimes present and congenital myasthenia has been reported.  Severe global psychomotor retardation is common and many infants never achieve normal milestones. 

Genetics

This is an autosomal recessive disorder resulting from homozygous mutations in the LAMB2 gene located at 3p21.  The normal gene encodes laminin beta-2 that is strongly expressed in intraocular muscles which may explain the hypoplasia of ciliary and pupillary muscles in Pierson syndrome.  Mutations in this gene are often associated with nephronophthisis but ocular abnormalities are not always present. 

Microcoria is also a feature of the autosomal dominant ocular condition known as congenital microcoria (156600).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Kidney replacement can restore renal function.  Glaucoma, cataracts, and retinal detachments require the usual treatment but patient selection is important due to the neurological deficits.  Lifelong monitoring is essential. 

References
Article Title: 

Ocular findings in a case of Pierson syndrome with a novel mutation in laminin ß2 gene

Arima M, Tsukamoto S, Akiyama R, Nishiyama K, Kohno RI, Tachibana T, Hayashida A, Murayama M, Hisatomi T, Nozu K, Iijima K, Ohga S, Sonoda KH. Ocular findings in a case of Pierson syndrome with a novel mutation in laminin ss2 gene. J AAPOS. 2018 Aug 16. pii: S1091-8531(18)30497-X. doi: 10.1016/j.jaapos.2018.03.016. [Epub ahead of print].

PubMed ID: 
30120985

Ophthalmological aspects of Pierson syndrome

Bredrup C, Matejas V, Barrow M, Bl?deghov?deg K, Bockenhauer D, Fowler DJ, Gregson RM, Maruniak-Chudek I, Medeira A, Mendon?ssa EL, Kagan M, Koenig J, Krastel H, Kroes HY, Saggar A, Sawyer T, Schittkowski M, Swietli?Nski J, Thompson D, VanDeVoorde RG, Wittebol-Post D, Woodruff G, Zurowska A, Hennekam RC, Zenker M, Russell-Eggitt I. Ophthalmological aspects of Pierson syndrome. Am J Ophthalmol. 2008 Oct;146(4):602-611.

PubMed ID: 
18672223

Senior-Loken Syndromes

Clinical Characteristics
Ocular Features: 

The retinal disease associated with juvenile nephronophthisis has been variably diagnosed as retinitis pigmentosa, sector retinitis pigmentosa, Leber congenital amaurosis, and tapeto-retinal degeneration.  The retinal picture varies among members of the same pedigree and the various disorders.  Areas of bone-corpuscle pigment clumping may be seen sectorially in the periphery or throughout the fundus, and is associated with arteriolar narrowing.  The ERG usually suggests widespread receptor disease with decreased responses but often normal photopic and scotopic implicit times in some patients.  In other cases, blindness is evident in the first year of life and the fundus picture resembles Leber congenital amaurosis with a nonrecordable ERG and clinical nystagmus.  Retinal pigment changes in these cases may be absent or minimal although arteriolar narrowing is usually seen.  Visual fields are often severely constricted and vision can be limited to light perception.

Systemic Features: 

Renal disease may begin with symptoms of polydipsia and polyuria often in the first decade of life.  The kidneys are cystic and renal function becomes progressively impaired.  The polycystic disease is referred to as nephronophthisis for the kidneys often fail completely.  A few patients have had sensorineural deafness.  Liver dysfunction has been reported in some patients but it is uncertain if this is coincidental or a part of the SLNS disorder.

Genetics

This renal-retinal phenotype seems to have an autosomal recessive pattern of inheritance but is genetically and clinically heterogeneous.  Together these account for the majority of hereditary causes of end-stage renal disease in children and young adults.  At least 5 renal-retinal disorders have been identified with a great deal of phenotypic overlap requiring genotyping for distinction.  The common causative mechanism may be defects in the cilia of photoreceptors and renal epithelial cells.

SLNS1 (266900) is caused by mutations in the NPHP1 gene (2q12-13) encoding nephrocystin.  Some form of pigmentary retinopathy is frequently present although its age of presentation is highly variable.

(There is a NPHP2 disorder [602088] but no SLSN disease is associated with the NPHP2 gene [now called INVS] at 9q22-31 and encoding inversin).

SLSN3 (606995) has been mapped to 3q21-22, overlapping the NPHP3 locus.  This is a later onset, adolescent disease often presenting with anemia and renal failure occurring at a mean age of 19 years.  'Tapetoretinal degeneration' is part of the clinical picture.

SLSN4 (606996) is caused by mutations in the NPHP4 gene (encoding nephrocystin-3) and located at 1p36.  The onset of retinal disease may be later in onset than in other conditions.

SLSN5 (IQCB1)(606254) is caused by mutations in the NPHP5 gene (encoding nephrocystin-5) and located at 3q13.33-21.2.  Multiple mutations in this gene have been found and all patients have a pigmentary retinopathy.

SLSN6 (610189) results from mutations in the NPHP6 (CEP290) gene at 12q21.  Some patients have had a 'tapetoretinal degeneration'.

SLSN7 (613615) is caused by mutations in the SDCCAG8 gene at 1q44.  Some patients have retinal degeneration leading to blindness.

SLSN8 (616307) is caused by mutations in the WDR19 gene at 4p14.  Patients have severe reduction in vision and visual fields are severely restricted.  Bone spicule pigmentation can be seen in the periphery, the retinal vessels are attenuated, the ERG is undetectable, and there may be temporal pallor of the optic discs.

Hereditary disorders with isolated pigmentary retinopathy and cystic kidney disease also occur separately.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment beyond renal transplantation is available.  Low vison aids can be helpful in some patients.

References
Article Title: 

Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin

Otto EA, Loeys B, Khanna H, Hellemans J, Sudbrak R, Fan S, Muerb U, O'Toole JF, Helou J, Attanasio M, Utsch B, Sayer JA, Lillo C, Jimeno D, Coucke P, De Paepe A, Reinhardt R, Klages S, Tsuda M, Kawakami I, Kusakabe T, Omran H, Imm A, Tippens M, Raymond PA, Hill J, Beales P, He S, Kispert A, Margolis B, Williams DS, Swaroop A, Hildebrandt F. Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. Nat Genet. 2005 Mar;37(3):282-8.

PubMed ID: 
15723066

Senior-Loken syndrome: revisited

Warady BA, Cibis G, Alon U, Blowey D, Hellerstein S. Senior-Loken syndrome: revisited. Pediatrics. 1994 Jul;94(1):111-2.

PubMed ID: 
8008515

Bardet-Biedl Syndromes

Clinical Characteristics
Ocular Features: 

The term Bardet-Biedl is applied to a clinically and genetically diverse group of disorders, of which at least 21 entities (BBS1-BBS21) are recognized.  This discussion is generically relevant to all of the phenotypes since the retinal dystrophy is common to all.

A progressive rod-cone dystrophy is a cardinal feature of all forms of Bardet-Biedl syndrome.  However, a subset of patients have primary cone degeneration.  In at least some forms of this syndrome, the cause seems to be a defect in the cilia that impairs the intraciliary protein transport between the inner and outer segments of the photoreceptors.  Vision loss has an early onset and usually progresses rapidly with severe loss of central and peripheral vision by the second or third decade of life.  Night blindness may be evident by 7 or 8 years of age.  The ERG is not recordable even in early childhood.  Pigmentary changes in the retina are often labeled retinitis pigmentosa but they are atypical for the usual disease.  Early changes are more characteristic of atrophy with a paucity of pigment but later the bone spicule pattern of hyperpigmentation appears.  The macula can appear atrophic and sometimes has a bull's eye pattern.  Optic atrophy and retinal arteriole narrowing may be seen.  Bardet-Biedl syndrome is clinically similar to Biemond syndrome (210350) except for iris colobomas that occur in the latter disorder.

Systemic Features: 

Obesity, mental retardation, renal disease, and hepatic fibrosis with syndactyly, brachydactyly, and post-axial polydactyly are characteristic.  The degree of mental handicap varies widely.  Diabetes mellitus is present in about one-third of patients.  Structural deformities of genitalia as well as hypogonadism and menstrual irregularities often occur as in some other disorders but the association of severe vision loss and characteristic retinal changes are diagnostically helpful.  Kidney failure secondary to cystic nephronophthisis or other renal malformations is common. Hypercholesterolemia is found in many patients.  Many patients have motor difficulties, appearing clumsy and unsteady.  Emotional lability and inappropriate outbursts can be part of these syndromes as well.

Genetics

The syndromes of Bardet-Biedl are inherited in an autosomal recessive pattern.  At least 21 mutations have been identified.  Not all cases are caused by homozygosity of the same mutation since compound heterozygosity at two loci may also cause similar phenotypes.

Laurence-Moon syndrome (245800) is considered part of the Bardet-Biedl group of diseases in this database. 

Mutations in PNPLA6 have been found in some individuals with a form of Bardet-Biedl syndrome as well as in Boucher-Neuhauser Syndrome (215470) also known as Chorioretinopathy, Ataxia, Hypogonadism Syndrome, and Trichomegaly Plus Syndrome (275400), in this database.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment exists for these syndromes but organ specific therapy may be helpful.

Studies in a mice model suggest that the neural retina may at least partially recover in type 1 following subretinal injection of viral vectors containing the wild-type bbs1 gene.

 

References
Article Title: 

Bardet-Biedl Syndrome

Suspitsin EN, Imyanitov EN. Bardet-Biedl Syndrome. Mol Syndromol. 2016 May;7(2):62-71.

PubMed ID: 
27385362

Predominantly cone-system dysfunction as rare form of retinal degeneration in patients with molecularly confirmed Bardet-Biedl Syndrome

Scheidecker S, Hull S, Perdomo Y, Studer F, Pelletier V, Muller J, Stoetzel C, Schaefer E, Defoort-Dhellemmes S, Drumare I, Holder Graham E, Hamel Christian P, Webster Andrew R, Moore Anthony T, Puech B, Dollfus Helene J. Predominantly cone-system dysfunction as rare form of retinal degeneration in patients with molecularly confirmed Bardet-Biedl Syndrome. Am J Ophthalmol. 2015 May 14. [Epub ahead of print]. 

PubMed ID: 
25982971

Neuropathy target esterase impairments cause Oliver-McFarlane and Laurence-Moon syndromes

Hufnagel RB, Arno G, Hein ND, Hersheson J, Prasad M, Anderson Y, Krueger LA, Gregory LC, Stoetzel C, Jaworek TJ, Hull S, Li A, Plagnol V, Willen CM, Morgan TM, Prows CA, Hegde RS, Riazuddin S, Grabowski GA, Richardson RJ, Dieterich K, Huang T, Revesz T, Martinez-Barbera JP, Sisk RA, Jefferies C, Houlden H, Dattani MT, Fink JK, Dollfus H, Moore AT, Ahmed ZM. Neuropathy target esterase impairments cause Oliver-McFarlane and Laurence-Moon syndromes. J Med Genet. 2015 Feb;52(2):85-94.

PubMed ID: 
25480986

Mutations in IFT172 Cause Isolated Retinal Degeneration and Bardet-Biedl Syndrome

Bujakowska KM, Zhang Q, Siemiatkowska AM, Liu Q, Place E, Falk MJ, Consugar M, Lancelot ME, Antonio A, Lonjou C, Carpentier W, Mohand-Sayid S, den Hollander AI, Cremers FP, Leroy BP, Gai X, Sahel JA, van den Born LI, Collin RW, Zeitz C, Audo I, Pierce EA. Mutations in IFT172 Cause Isolated Retinal Degeneration and Bardet-Biedl Syndrome. Hum Mol Genet. 2014 Aug 28.  [Epub ahead of print].

PubMed ID: 
25168386

Corneal Dystrophy, Lattice Type II

Clinical Characteristics
Ocular Features: 

This is a systemic amyloidosis disorder with significant corneal disease.  The corneal stroma contains linear deposits which are more discrete, more peripheral, more delicate, and more radial than those in lattice type I with which it is sometimes confused.  There is also less accumulation of amorphous amyloid material than in type I.  The onset is often later as well, and rarely seen in childhood.  Corneal sensitivity is reduced.  Vision is less affected than in type I lattice dystrophy and patients rarely require keratoplasty, and, if so, later in life.

Amyloid deposits are found in the cornea, sclera, choroid, lacrimal gland, ciliary nerves, and adnexal blood vessels.  Ptosis and extraocular muscle dysfunction is not significant.

Systemic Features: 

Amyloid deposits are found throughout the body including blood vessels, heart, kidney, skin and nerves.  A "mask-like" facies with a protruding lower lip, dry itchy skin, peripheral and cranial neuropathy, and renal failure are clinical features but often have their onset late in life.  Facial paralysis and bulbar palsy may be the result.

Genetics

While this is considered an autosomal dominant disorder, presumed homozygous cases have been reported in Finland where the first cases were described.  These cases seem to have more severe disease with an earlier onset than found among patients with heterozygous mutations.  Mutations in the GSN gene located at 9q34 are responsible.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Penetrating keratoplasty can be beneficial but is rarely needed for visual rehabilitation.  The amyloid deposits may recur in the donor tissue.  The reduced corneal sensitivity secondary to neural involvement increases the risk of post-operative neurotrophic epithelial defects.

References
Article Title: 

Hereditary gelsolin amyloidosis

Kiuru-Enari S, Haltia M. Hereditary gelsolin amyloidosis. Handb Clin Neurol. 2013;115:659-81. PubMed PMID: 23931809.

PubMed ID: 
23931809

Alport Syndrome (Collagen IV-Related Nephropathies)

Clinical Characteristics
Ocular Features: 

X-linked Alport syndrome is a basement membrane disease with important ocular manifestations.  The lens is usually normal at birth but lens opacities eventually occur in a significant number of individuals with the most characteristic type being anterior polar in location.  Involvement of the anterior lens capsule often results in bilateral anterior lenticonus (25%) and may be progressive.  It is claimed that the severity of the lenticonus is a valuable marker in judging the overall disease severity.  In early stages it may be difficult to detect but its presence is suggested by an 'oil droplet' reflex during retinoscopy or slit lamp examination.  All males with anterior lenticonus should be evaluated for Alport syndrome. 

Posterior polymorphous corneal dystrophy and posterior subcapsular opacities have also been noted.  The defect in basement membranes may lead to recurrent corneal erosions, even in children, which can be incapacitating and difficult to treat.  Involvement of Bruch's membrane has been considered the source of retinal pigment epithelial changes described as a flecked retina, or 'fundus albipunctatus', found in 85% of patients.  More recent evidence using OCT suggests that the dot-and-fleck retinopathy results primarily from abnormalities in the internal limiting membrane and the nerve fiber layer.  The yellowish and/or whitish flecks are most commonly located in the posterior pole and particularly in the macula.  There is no night blindness or visual impairment from the retinal involvement.  Fluorescein angiography shows patchy areas of hyperfluorescence.  The amount of visual impairment depends primarily on the extent of lens involvement.

Termporal macular thinning occurs to some extent in all types of Alport syndrome based on OCT findings.   In one series all patients with X-linked disease had temporal thinning suggesting that this might be a useful diagnostic sign.  However, similar thinning is also seen in Leber hereditary optic neuropathy (535000), and dominant optic atrophy (165500).

Systemic Features: 

Nephritis with hematuria secondary to basement membrane disease of the glomeruli is the most life threatening aspect of this disorder.  It occurs in both sexes but more commonly in males in which it has an earlier onset.  Progressive sensorineural hearing loss beginning with high frequencies occurs in many patients, often with subtle onset in childhood, but many adults retain some hearing capacity.  In males, the onset of hearing loss often occurs before kidney disease is evident.  Hearing loss is less frequent and less severe in females.  However, there is considerable clinical and genetic heterogeneity and not all patients have the complete syndrome of nephritis, deafness and ocular disease.  In fact, it has been suggested that Alport syndrome can be subtyped into at least six categories based on the extent of organ involvement.

Genetics

Alport syndrome is a member of a group of disorders known as collagen IV-related nephropathies.  It is a genetically heterogeneous disease with 85% inherited in an X-linked pattern and most of the remainder occurring in an autosomal recessive pattern and only a few seemingly autosomal dominant.  All result from a defect in type IV collagen found in basement membranes.  About 80% of cases have a mutation in the COL4A5 gene which is located at Xq22.3.  Males seem to be more severely affected than females in the X-linked form of the disease but clearly this disorder affects both sexes reflecting the genetic heterogeneity, much of which remains to be delineated.  The autosomal disease generally results from mutations in the COL4A3 or COL4A4 genes and has been seen in both recessive and dominant patterns of transmission.

Pedigree: 
Autosomal dominant
Autosomal recessive
X-linked recessive, carrier mother
X-linked recessive, father affected
Treatment
Treatment Options: 

Renal transplantation can be lifesaving but a minority of individuals develop a specific antiglomerular basement membrane antibody (anti-GBM) that may lead to graft rejection.  Allograft survival rates are generally excellent though.  Lens extraction is beneficial where the media is compromised.

References
Article Title: 

Alport syndrome: a genetic study of 31 families

M'Rad R, Sanak M, Deschenes G, Zhou J, Bonaiti-Pellie C, Holvoet-Vermaut L,
Heuertz S, Gubler MC, Broyer M, Grunfeld JP, et al. Alport syndrome: a genetic
study of 31 families.
Hum Genet. 1992 Dec;90(4):420-6.

PubMed ID: 
1483700

Fabry Disease

Clinical Characteristics
Ocular Features: 

Fabry disease is a lysosomal enzyme (alpha-galactosidase A) deficiency resulting in the accumulation of globotriaosylceramide (Gb3) and related glycosphingolipids throughout the body.  The signature ocular manifestation is the whorl-like corneal pattern of lipid (glycosphingolipid) deposits which are present in both hemizygous males and heterozygous females.  These are sometimes referred to as cornea verticillata or Fleischer vortex dystrophy with a pattern similar to that seen in some patients using atabrine or amiodarone.  A general 'haze' throughout the cornea is even more common.  Lens opacities may also be distinctive and generally are one of two types: spoke-like opacities beneath the posterior capsule among males, and wedge-shaped anterior subcapsular deposits, again primarily in males.  The corneal and lens opacities seldom cause significant vision problems.

Involvement of the ocular vessels is present in almost all patients.  A notable increase in tortuosity of conjunctival vessels is present in 97% of hemizygous males and 78% of heterozygous females.  Increased retinal vessel tortuosity is less common but arteriolar involvement significantly increases the risk of central retinal artery occlusions.  An 11 yo Turkish female heterozygote with a cilioretinal artery occlusion and anterior ischemic optic neuropathy in one eye has been reported.

Systemic Features: 

The relatively common occurrence and the protean nature of Fabry disease has lead to its designation by some as the Great Imposter, replacing syphilis to which this term was previously applied.  Compounding the diagnostic difficulties in some individuals is the absence of the complete classical phenotype due to the presence of DNA variants that may modify the expression of some the clinical features.

Most signs present in the first or second decade of life with generally earlier onset in males.  The presence of proteinuria before the age of 20 years in the absence of other primary kidney disease should always raise the possibility of Fabry disease.  However, the diagnosis is often not made until the third decade in males and the fourth decade in females.  Glycosphingolipid inclusion deposits in endothelial cells are responsible for the systemic signs and symptoms including renal and heart disease which are the most common causes of premature death.  Small vessel involvement resulting in cerebrovascular disease and painful peripheral neuropathy can be debilitating. The risk of ischemic strokes is increased.  Cardiac manifestations include hypertrophic cardiomyopathy (60%), mainly involving the left ventricle, and dysfunction of the mitral and aortic valves (10 to 25%).  Dysfunction of renal glomeruli may progress to renal failure by the third to fifth decade in males.  The angiokeratomas and angiomas (most pronounced in a swimming trunk pattern) are secondary to vascular involvement of cutaneous vessels but are non-specific since they also occur in other lysosomal diseases.  The life expectancy of females is reduced by about 5 years and for males about 16 years compared with the general US population.

Involvment of the autonomic system manifests as intermittent fever, hypohidrosis, and poor temperature control.  Some patients have periodic crises of severe pain in the extremities as well as intermittent epigastric pain. Hearing loss and episodic tinnitus are common complaints.

Genetics

This is an X-linked disorder and generally assumed to be recessive although some have suggested dominance since most heterozygous females have significant manifestations that can be life-threatening.  The mutations in the responsible gene (GLA), located at Xq22, involve a variety of deletions, rearrangements and single base pair changes.  Defects in the GLA gene lead to dysfunction of the enzyme alpha-galactosidase A resulting in lysosomal deposition of glycosphingolipids throughout the body, especially in vascular endothelial cells.   

The milder disease and increase in the range of clinical manifestations among females is likely a reflection of variable patterns of X-inactivation.

Increased tortuosity of retinal arterioles is also seen in fucidosis (230000), Williams syndrome (194050), and in a condition known as retinal arteriolar tortuosity (611773, 180000).

Pedigree: 
X-linked dominant, father affected
X-linked dominant, mother affected
Treatment
Treatment Options: 

Enzyme replacement therapy using agalsidase alfa (commercially available as Febrazyme (tm)) have shown promise as measured by renal function, pain intensity, left ventricular size, and general quality of life.  However, the impact on longevity remains to be determined.  Evidence suggests that early treatment is associated with improved outcomes. The corneal and lenticular opacities generally do not require treatment.

Continuous release of cardiac troponin I (cTNI) with elevated serum levels may be a clue to the severity of heart involvement.

References
Article Title: 

Favourable effect of early versus late start of enzyme replacement therapy on plasma globotriaosylsphingosine levels in men with classical Fabry disease

Arends M, Wijburg FA, Wanner C, Vaz FM, van Kuilenburg ABP, Hughes DA, Biegstraaten M, Mehta A, Hollak CEM, Langeveld M. Favourable effect of early versus late start of enzyme replacement therapy on plasma globotriaosylsphingosine levels in men with classical Fabry disease. Mol Genet Metab. 2017 May 4. pii: S1096-7192(17)30156-7.

PubMed ID: 
28495078

Continuous cardiac troponin I release in fabry disease

Feustel A, Hahn A, Schneider C, Sieweke N, Franzen W, Gunduz D, Rolfs A, Tanislav C. Continuous cardiac troponin I release in fabry disease. PLoS One. 2014 Mar 13;9(3):e91757. doi: 10.1371/journal.pone.0091757. eCollection 2014.

PubMed ID: 
24626231

Fabry disease: overall effects of agalsidase alfa treatment

Beck M, Ricci R, Widmer U, Dehout F, de Lorenzo AG, Kampmann C, Linhart A,
Sunder-Plassmann G, Houge G, Ramaswami U, Gal A, Mehta A. Fabry disease: overall effects of agalsidase alfa treatment. Eur J Clin Invest. 2004 Dec;34(12):838-44.

PubMed ID: 
15606727
Subscribe to RSS - renal failure