peripheral neuropathy

Kufor-Rakeb Syndrome

Clinical Characteristics
Ocular Features: 

Most patients have a supranuclear gaze paresis.  Patients later may have dystonic oculogyric spasms.

Systemic Features: 

This is a rapidly progressive neurodegenerative disorder with juvenile onset.  First signs of Parkinisonism are evident between the ages of 12 and 16 years of age.  Within a year of onset severe motor handicaps develop along with some degree of dementia with aggression and visual hallucinations.  Cognitive decline is often a feature.  Fine tremors in the chin may be seen along with other extrapyramidal signs but these are not prominent in the limbs.  Instead there is often rigidity and bradykinesia.  Dysphagia, dysarthria, and ataxia are features in many patients.  Peripheral sensory neuropathy and anosmia are present in some individuals. 

Brain imaging often reveals generalized atrophy of the cerebellum, cerebral cortex, and brainstem.

Genetics

This condition results from homozygous or compound heterozygous mutations in the ATP13A2 gene (1p36.13).  

Biallelic mutations in the same gene are also responsible for spastic paraplegia 78 (617225) with somewhat similar clinical features except for the general absence of Parkinsonism.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

There may be an initial therapeutic response to L-DOPA but this is often not maintained

References
Article Title: 

Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78)

Estrada-Cuzcano A, Martin S, Chamova T, Synofzik M, Timmann D, Holemans T, Andreeva A, Reichbauer J, De Rycke R, Chang DI, van Veen S, Samuel J, Schols L, Poppel T, Mollerup Sorensen D, Asselbergh B, Klein C, Zuchner S, Jordanova A, Vangheluwe P, Tournev I, Schule R. Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78). Brain. 2017 Feb;140(Pt 2):287-305.

PubMed ID: 
28137957

Encephalopathy Due To Defective Mitochondrial And Peroxisomal Fission 2

Clinical Characteristics
Ocular Features: 

Visual impairment and optic atrophy are usually present.  Visual-evoked potentials may be negative or slowed severely.  Some degree of ophthalmoparesis is often present while frank external ophthalmoplegia can develop in the second year of life.  In one patient aged 7 years, MRI showed increased T2 signals in the optic radiation.

Systemic Features: 

Microcephaly becomes evident in the first year of life and seizures can appear in this period as well.  General developmental delays are present.  There may be evidence of Leigh-like basal ganglia disease.  Dysphagia may require the placement of a gastroscopy tube.  Truncal hypotonia can be so severe that sitting and head control are not possible.  However, there is often spasticity and hyperreflexia in the limbs.  EEG recordings show hypsarrhythmia.

Brain MRI may show increased T2 signaling in the global pallidus, thalamus, and the subthalamic nucleus.

Patients may never be able to sit or walk and usually do not develop speech.  

Genetics

Homozygous or compound heterozygous truncating mutations in the MFF gene (mitochondrial fission factor) (2q36.3) is responsible for this condition.  Patients with EMPF2 may have abnormally elongated and tubular mitochondria and peroxisomes in fibroblasts.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available for the general disorder.  Gastrostomy tubes may be required to maintain adequate nutrition.  Airway hygiene is important.  Respiratory complications can be a factor in the early demise of children.

References
Article Title: 

Mitochondrial DNA Depletion Syndrome 1

Clinical Characteristics
Ocular Features: 

Progressive external ophthalmoplegia has an adult onset, usually in the late second or early third decade of life.  Ptosis is commonly present as well.

Systemic Features: 

This condition has been called a mitochondrial neurogastrointestinal encephalopathy (MNGIE).  Gastrointestinal problems are among the most disabling with poor absorption of foodstuffs leading to weight loss, marked cachexia, and chronic malnutrition.  Added to this are gastroparesis, constipation, vomiting, and intermittent diarrhea with abdominal pain.  Many individuals develop diverticulosis and diverticulitis that may lead to intestinal perforations.  The combined intestinal dysfunctions can lead to signs of intestinal pseudoobstruction.

Many patients have a progressive sensorineural hearing loss.  Leukoencephalopathy, sensorimotor peripheral neuropathy, and sometimes mild proximal limb weakness may be present.

Genetics

Homozygous and compound heterozygous mutations in the TYMP gene (22q13.33) are responsible for this autosomal recessive disorder.  This nuclear gene is active in the maintainence of mitochondrial DNA.  When the gene is dysfunctional, the mitochondria can be depleted to a variable extent and they may contain multiple deletions and point mutations.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

There is no effective treatment for the overall condition.  Nutritionists can provide important advice on diet to maintain good nutrition.  Regular monitoring by gastroenterologists is important.  Perforations of the bowels require prompt surgical repair.  

References
Article Title: 

Mitochondrial neurogastrointestinal encephalomyopathy: an autosomal recessive disorder due to thymidine phosphorylase mutations

Nishino I, Spinazzola A, Papadimitriou A, Hammans S, Steiner I, Hahn CD, Connolly AM, Verloes A, Guimaraes J, Maillard I, Hamano H, Donati MA, Semrad CE, Russell JA, Andreu AL, Hadjigeorgiou GM, Vu TH, Tadesse S, Nygaard TG, Nonaka I, Hirano I, Bonilla E, Rowland LP, DiMauro S, Hirano M. Mitochondrial neurogastrointestinal encephalomyopathy: an autosomal recessive disorder due to thymidine phosphorylase mutations. Ann Neurol. 2000 Jun;47(6):792-800.

PubMed ID: 
10852545

Behr Syndrome

Clinical Characteristics
Ocular Features: 

Optic atrophy is the hallmark of this condition.  It is usually considered infantile in onset which may be helpful in the clinical diagnosis as many other forms of optic atrophy have their onset somewhat later.   Central scotomas and dyschromatopsia may be present.  Visual impairment is often severe but the progression can plateau in early midlife and remains static as first reported by Behr.

Systemic Features: 

A wide range of neurologic non-specific signs and symptoms may be present.  Behr's patients had ataxia, spasticity, sensory loss, and cognitive deficits.  Deafness has been reported in some patients.  All these may progress for a period of time and then remain static.  Heterozygous carriers have been reported to have mild neurologic manifestations.

It is important to emphasize that case descriptions reported in the literature often cannot be accurately assigned to a specific condition without genotyping.   For this reason histological reports of retinal ganglion cell loss and histological alterations in the brain such as gliosis and neuronal loss may or may not be a part of Behr syndrome.  Further studies should clarify what is now a confusing category of clinical disease.

Genetics

Homozygous or compound heterozygous mutations in the OPA1 gene (3q29) have been found in families with early-onset atrophy called Behr optic atrophy.  However, heterozygous mutations in the same gene have also been associated with optic atrophy (165500).  

Optic atrophy is a common sign among neurologic disorders such as spinocerebellar ataxias and in developmental (e.g., microphthalmia), and degenerative (e.g., retinal dystrophies) disorders of the eye.  More than 130 conditions with optic atrophy are described in this database.  Because of the overlapping clinical features, genotyping may be necessary to accurately determine which disorder is present.

See 165500 for a summary of the genetic heterogeneity of optic atrophy with links to other heritable forms OPA2 through OPA8.

See Behr Early Onset Optic Atrophy Syndromes in this database for more information on phenotypes and genotypes.

Homozygous mutations in OPA1 are also responsible for the mitochondrial DNA depletion syndrome 14 (616896) reported in a single family.  The clinical features include encephalomypathy, hypertrophic cardiomyopathy, and abnormal pursuit movements with optic atrophy.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Fatal infantile mitochondrial encephalomyopathy, hypertrophic cardiomyopathy and optic atrophy associated with a homozygous OPA1 mutation

Spiegel R, Saada A, Flannery PJ, Burte F, Soiferman D, Khayat M, Eisner V, Vladovski E, Taylor RW, Bindoff LA, Shaag A, Mandel H, Schuler-Furman O, Shalev SA, Elpeleg O, Yu-Wai-Man P. Fatal infantile mitochondrial encephalomyopathy, hypertrophic cardiomyopathy and optic atrophy associated with a homozygous OPA1 mutation. J Med Genet. 2016 Feb;53(2):127-31.

PubMed ID: 
26561570

Early-onset Behr syndrome due to compound heterozygous mutations in OPA1

Bonneau D, Colin E, Oca F, Ferre M, Chevrollier A, Gueguen N, Desquiret-Dumas V, N'Guyen S, Barth M, Zanlonghi X, Rio M, Desguerre I, Barnerias C, Momtchilova M, Rodriguez D, Slama A, Lenaers G, Procaccio V, Amati-Bonneau P, Reynier P. Early-onset Behr syndrome due to compound heterozygous mutations in OPA1. Brain. 2014 Oct;137(Pt 10):e301.

PubMed ID: 
25012220

Multi-system neurological disease is common in patients with OPA1 mutations

Yu-Wai-Man P, Griffiths PG, Gorman GS, Lourenco CM, Wright AF, Auer-Grumbach M, Toscano A, Musumeci O, Valentino ML, Caporali L, Lamperti C, Tallaksen CM, Duffey P, Miller J, Whittaker RG, Baker MR, Jackson MJ, Clarke MP, Dhillon B, Czermin B, Stewart JD, Hudson G, Reynier P, Bonneau D, Marques W Jr, Lenaers G, McFarland R, Taylor RW, Turnbull DM, Votruba M, Zeviani M, Carelli V, Bindoff LA, Horvath R, Amati-Bonneau P, Chinnery PF. Multi-system neurological disease is common in patients with OPA1 mutations. Brain. 2010 Mar;133(Pt 3):771-86.

PubMed ID: 
20157015

Spastic Paraplegia 75

Clinical Characteristics
Ocular Features: 

Nystagmus with optic atrophy is usually present and one individual had glaucoma. 

Systemic Features: 

This is an early-onset and progressive neurodegenerative disorder.  Hypotonia may be present at birth.  A spastic gait and difficulty walking is noted in early childhood and most individuals never walk unassisted. Yong adults have spastic paresis with extensor plantar responses and clonus has been reported.  Distal muscle atrophy in the lower extremities has been noted.  Speech is dysarthric.  Brain imaging has been normal in some patients whereas others have mild atrophy of the cerebellum and the corpus callosum.  Cognitive impairment is variable with some individuals showing poor school performance while others are described as mentally retarded.

Genetics

Homozygous mutations in the MAG gene (19q13.12) are responsible for this disorder.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No effective treatment has been reported although physical therapy may be helpful. Special education, speech and physical therapy, and low vision devices might also be of benefit.

References
Article Title: 

Myelin-associated glycoprotein gene mutation causes Pelizaeus-Merzbacher disease-like disorder

Lossos A, Elazar N, Lerer I, Schueler-Furman O, Fellig Y, Glick B, Zimmerman BE, Azulay H, Dotan S, Goldberg S, Gomori JM, Ponger P, Newman JP, Marreed H, Steck AJ, Schaeren-Wiemers N, Mor N, Harel M, Geiger T, Eshed-Eisenbach Y, Meiner V, Peles E. Myelin-associated glycoprotein gene mutation causes Pelizaeus-Merzbacher disease-like disorder. Brain. 2015 Sep;138(Pt 9):2521-36.

PubMed ID: 
26179919

Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders

Novarino G, Fenstermaker AG, Zaki MS, Hofree M, Silhavy JL, Heiberg AD, Abdellateef M, Rosti B, Scott E, Mansour L, Masri A, Kayserili H, Al-Aama JY, Abdel-Salam GM, Karminejad A, Kara M, Kara B, Bozorgmehri B, Ben-Omran T, Mojahedi F, Mahmoud IG, Bouslam N, Bouhouche A, Benomar A, Hanein S, Raymond L,Forlani S, Mascaro M, Selim L, Shehata N, Al-Allawi N, Bindu PS, Azam M, Gunel M, Caglayan A, Bilguvar K, Tolun A, Issa MY, Schroth J, Spencer EG, Rosti RO, Akizu N, Vaux KK, Johansen A, Koh AA, Megahed H, Durr A, Brice A, Stevanin G, Gabriel SB, Ideker T, Gleeson JG. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science. 2014 Jan 31;343(6170):506-11.

PubMed ID: 
24482476

Spastic Paraplegia 74

Clinical Characteristics
Ocular Features: 

Onset of visual impairment occurs at ages of 10-14 years with optic pallor evident on fundoscopy. MRI imaging reveals physical atrophy of the optic nerve.  Visual acuity ranges from 0.5 to finger counting.  Visual field defects include central scotomas and peripheral concentric constriction.

Systemic Features: 

Symptoms consisting of a spastic gait and distal sensory impairment usually appear in the first decade and are slowly progressive.  Increased deep tendon reflexes and extensor plantar responses may be present at that time but later distal leg muscle atrophy and pes cavus appear.  The ankle reflexes later disappear.  Cognitive function is normal and adults are able to lead an independent life.

Nerve conduction studies in 4 individuals showed reduced muscle action potentials and velocity while sensory conduction was normal.  Cerebellar atrophy along with an attenuated corpus callosum and cervical spinal cord atrophy was noted on MRI imaging in one of 3 studied patients.

Genetics

A homozygous splice site mutation in IBA57 (1q42) has been found to segregate with this condition in a large consanquineous Arab family.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is known for the basic disease but physical therapy and low vision aids are likely beneficial.

References
Article Title: 

Fe S protein assembly gene IBA57 mutation causes hereditary spastic paraplegia

Lossos A, Stumpfig C, Stevanin G, Gaussen M, Zimmerman BE, Mundwiller E, Asulin M, Chamma L, Sheffer R, Misk A, Dotan S, Gomori JM, Ponger P, Brice A, Lerer I, Meiner V, Lill R. Fe/S protein assembly gene IBA57 mutation causes hereditary spastic paraplegia. Neurology. 2015 Feb 17;84(7):659-67.

PubMed ID: 
25609768

Ataxia with Oculomotor Apraxia 4

Clinical Characteristics
Ocular Features: 

Oculomotor apraxia is usually noted after the ataxia and dystonia are apparent.

Systemic Features: 

The mean age of first symptoms is 4.3 years with dystonia being the first symptom.  Cerebellar ataxia is usually the second symptom to appear.  Cognitive impairment is present in most but not all patients with this condition.  This can progress to severe dementia in some individuals.  Dystonia may become attenuated with time.  Peripheral neuropathy with decreased vibration sense and areflexia is often present.  Cerebellar atrophy is present in all patients.

Motor difficulties such as weakness and muscle atrophy may lead to loss of independent mobility by the second to third decades.

Genetics

Homozygous or compound heterozygous mutations in the PNKP gene (19q13.33) are responsible for this disorder.

Mutations in this gene have also been associated with an infantile form of epileptic encephalopathy, microcephaly, and developmental delay (613402).

See also Ataxia with Oculomotor Apraxia 1 (208920) with hypoalbuminemia, Ataxia with Oculomotor Apraxia 2 (606002), and Ataxia with Oculomotor Apraxia 3 (615217).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

There is no general treatment for this condition but physical therapy may be helpful in the early stages.

References
Article Title: 

Trichomegaly Plus Syndrome

Clinical Characteristics
Ocular Features: 

Eyelashes are described as ‘long’, and the eyebrows are bushy.  The majority of individuals have poor vision secondary to severe receptor dysfunction.  Night blindness and severe photophobia are features in some cases.  Both retinal and choroidal atrophy have been diagnosed in the first 5 years of life and most patients have a progressive and extensive pigmentary retinopathy.

Systemic Features: 

Scalp alopecia and sparse body hair is common in spite of the trichomegaly of the eyebrows and eyelashes.  Frontal bossing has been noted in some patients.  Pituitary dysfunction is suggested by low growth hormone levels, features of hypogonadotropic hypogonadism, and possibly hypothyroidism.

Some deficit of cognitive function is usually present and a few patients have been described as mentally retarded.  There is evidence of progressive neurological damage both centrally and peripherally. Developmental milestones are often achieved late and some individuals have been observed to regress during the first decade of life.  The peripheral neuropathy includes both sensory and motor components.  Sensory nerve action potentials may be lost in the first decade while early motor functions may regress during the same period.  Several patients have had evidence of progressive cerebellar ataxia.

Genetics

Compund heterozygous mutations in PNPLA6 (19p13.2), coding for neuropathy target esterase, have been found in several patients presumed to have this condition.  Autosomal recessive inheritance has been proposed on the basis of a single family in which an affected brother and sister were born to first cousin parents.   

The relationship of this disorder to that found in two cousins, offspring of consanguineous matings, described as ‘cone-rod congenital amaurosis associated with congenital hypertrichosis: an autosomal recessive condition’ (204110 ) is unknown.  They were described as having visual impairment from birth and profound photophobia.  Fundus changes were minimal with a bull’s eye pattern of pigment changes in the macula described as indicative of a rod-cone congenital amaurosis.  ERG responses were unrecordable.  These individuals apparently did not have other somatic, psychomotor or neurologic deficits.

Mutations in PNPLA6 occur in other conditions including a form of Bardet-Biedl Syndrome (209900), and Boucher-Neuhauser Syndrome (215470) also known as Chorioretinopathy, Ataxia, Hypogonadism Syndrome in this database.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available for this condition although growth hormone and testosterone supplementation have been reported to have the appropriate selective effects.

References
Article Title: 

Neuropathy target esterase impairments cause Oliver-McFarlane and Laurence-Moon syndromes

Hufnagel RB, Arno G, Hein ND, Hersheson J, Prasad M, Anderson Y, Krueger LA, Gregory LC, Stoetzel C, Jaworek TJ, Hull S, Li A, Plagnol V, Willen CM, Morgan TM, Prows CA, Hegde RS, Riazuddin S, Grabowski GA, Richardson RJ, Dieterich K, Huang T, Revesz T, Martinez-Barbera JP, Sisk RA, Jefferies C, Houlden H, Dattani MT, Fink JK, Dollfus H, Moore AT, Ahmed ZM. Neuropathy target esterase impairments cause Oliver-McFarlane and Laurence-Moon syndromes. J Med Genet. 2015 Feb;52(2):85-94.

PubMed ID: 
25480986

Congenital Disorder of Glycosylation, Type Ia

Clinical Characteristics
Ocular Features: 

Strabismus, roving eye movements (and nystagmus), and visual inattention are found in nearly all patients. Esotropia with defective abduction seems to be the most common oculomotor finding and may be present at birth.  Cataracts, ocular colobomas, oculomotor apraxia, disc pallor, and glaucoma have also been reported.  Vision is always subnormal. Reports of ocular disease before modern genotyping are not specific to the subtypes of CDG I now recognized.

This is a congenital, progressive disorder of photoreceptor degeneration with a later onset of progressive pigmentary retinopathy.  It is described in some cases as a typical retinitis pigmentosa.  The ERG is abnormal in all patients even if the pigmentary pattern is atypical for RP.  Rod responses are usually absent while the cone b-wave implicit time is delayed.  The degree of photoreceptor damage is variable, however.  Extended retinal function among younger patients suggest that the ‘on-pathway’ evolving synapses in the outer plexiform layer among photoreceptors, bipolar cells, and horizontal cells is severely dysfunctional.

Systemic Features: 

This is a multisystem disorder, often diagnosed in the neonatal period by the presence of severe encephalopathy with hypotonia, hyporeflexia, and poor feeding.  Failure to thrive, marked psychomotor retardation, delayed development, growth retardation, and ataxia become evident later in those who survive.  Cerebellar and brainstem atrophy with a peripheral neuropathy can be demonstrated during late childhood.  Some older patients have a milder disease, often with muscle atrophy and skeletal deformities such as kyphoscoliosis and a fusiform appearance of the digits.  Maldistribution of subcutaneous tissue is often seen resulting in some dysmorphism, especially of the face.  Hypogonadism and enlargement of the labia majora are commonly present.  Some patients have evidence of hepatic and cardiac dysfunction which together with severe infections are responsible for a 20% mortality rate in the first year of life.

Genetics

This is one of a group of genetically (and clinically) heterogeneous autosomal recessive conditions caused by gene mutations that result in enzymatic defects in the synthesis and processing of oligosaccharides onto glycoproteins. This type (Ia) is the most common.   The mutation lies in the PMM2 gene (16p13.2).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Most children require tube feeding with nutritional supplements.  The risk of systemic infections is high.  Those patients who survive into the second decade and beyond may require orthopedic procedures and are confined to wheelchairs.  Physical, occupational, and speech therapy along with parental support are important.

References
Article Title: 

Spastic Ataxia 6, Charlevoix-Saguenay Type

Clinical Characteristics
Ocular Features: 

Patches of myelinated axons from retinal neurons in the retina are not unusual in the general population but are especially prominent among families in Canada with SPAX6.  These typically appear as striated white or yellowish-white patches with 'fuzzy' borders in the nerve fiber layer of the retina and radiate from the disc.   These findings are usually of no functional significance but if sufficiently large and dense can be demonstrated on perimetry as small scotomas.   OCT studies in two Belgian families have revealed increased thickness of the peri-papillary retinal nerve fiber layer in both patients and carriers without clinical evidence of myelination.  In addition the retinal nerve fiber layer has been described as 'hypertrophied' outside the areas of myelination.   Horizontal gaze nystagmus and deficits in conjugate pursuit movements are often present.   

Systemic Features: 

This neurodegenerative disorder begins in early childhood (12-18 months) with signs of cerebellar ataxia, pyramidal signs, and peripheral neuropathy.  Slightly older children develop a mixed-sensorimotor peripheral neuropathy. Dysarthria, limb spasticity, distal muscle wasting, and mitral valve prolapse are often present.  Knee reflexes are exaggerated while ankle reflexes are often absent.  Extensor plantar responses are usually present.  The EMG can show signs of denervation with slowed conduction while brain neuroimaging demonstrates regional atrophy in the cerebellum, especially the superior vermis.  Most patients eventually become wheelchair-bound.  However, cognitive and daily living skills are preserved into adulthood.  Most patients live into the sixth decade.

Genetics

Homozygous or compound heterozygous mutations in the SACS gene (13q12.12) are responsible for this autosomal recessive disorder.

The largest number of cases is found in the Charlevoix-Saguenay region of Quebec, Canada among the descendents of a founder but families have also been found in Asia and Europe.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment for the general disease is available but specific therapies for some functions such as urinary urgency are available.  Physical and speech therapy as well as special education assistance can be helpful for adaptation.

References
Article Title: 

Location score and haplotype analyses of the locus for autosomal recessive spastic ataxia of Charlevoix-Saguenay, in chromosome region 13q11

Richter A, Rioux JD, Bouchard JP, Mercier J, Mathieu J, Ge B, Poirier J, Julien D, Gyapay G, Weissenbach J, Hudson TJ, Melan?sson SB, Morgan K. Location score and haplotype analyses of the locus for autosomal recessive spastic ataxia of Charlevoix-Saguenay, in chromosome region 13q11. Am J Hum Genet. 1999 Mar;64(3):768-75. Erratum in: Am J Hum Genet 1999 Apr;64(4):1257.

PubMed ID: 
10053011

Pages

Subscribe to RSS - peripheral neuropathy