weakness

Neurodevelopmental Disorder, Mitochondrial, with Abnormal Movements and Lactic Acidosis

Clinical Characteristics
Ocular Features: 

Optic atrophy is sometimes present.  Nystagmus, and strabismus are seen in some patients.  A pigmentary retinopathy was found in one individual.

Systemic Features: 

This is a clinically heterogeneous disorder with extensive neurological deficits.  Patients have feeding and swallowing difficulties from the neonatal period.  There is intrauterine growth retardation and postnatally patients usually exhibit psychomotor delays and intellectual disabilities.  Some develop seizures and few achieve normal developmental milestones.  Axial hypotonia is present from early infancy and most patients have muscle weakness and atrophy.  However, there may be spastic quadriplegia which is often associated with dysmetria, tremor, and athetosis.  Ataxia eventually develops in most patients. 

Brain imaging shows cerebral and cerebellar atrophy, enlarged ventricles, white matter defects, and delayed myelination. 

Incomplete metabolic studies suggest there may be abnormalities in mitochondrial oxidative phosphorylation activity in at least some tissues.  Most patients have an elevated serum lactate.

Death in childhood is common.

Genetics

Homozygous and compound heterozygous mutations in the WARS2 gene have been found in several families with this condition.  The considerable variation in the phenotype may at least partially be explained by the fact that an additional variant in the W13G gene is sometimes present which impairs normal localization of the WARS2 gene product within mitochondria.

The transmission pattern in several families is consistent with autosomal recessive inheritance.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported for the general condition.

References
Article Title: 

Biallelic variants in WARS2 encoding mitochondrial tryptophanyl-tRNA synthase in six individuals with mitochondrial encephalopathy

Wortmann SB, Timal S, Venselaar H, Wintjes LT, Kopajtich R, Feichtinger RG, Onnekink C, Muhlmeister M, Brandt U, Smeitink JA, Veltman JA, Sperl W, Lefeber D, Pruijn G, Stojanovic V, Freisinger P, V Spronsen F, Derks TG, Veenstra-Knol HE, Mayr JA, Rotig A, Tarnopolsky M, Prokisch H, Rodenburg RJ. Biallelic variants in WARS2 encoding mitochondrial tryptophanyl-tRNA synthase in six individuals with mitochondrial encephalopathy. Hum Mutat. 2017 Dec;38(12):1786-1795.

PubMed ID: 
28905505

Spastic Ataxia 8, Autosomal Recessive, with Hypomyelinating Leukodystrophy

Clinical Characteristics
Ocular Features: 

Reported ocular signs are limited to abnormal eye movements.  In other forms of spastic ataxia, nystagmus is evident in association with optic atrophy but no fundus examinations are reported in the 3 families with SPAX8.  Hypometric saccades and limited upgaze have also been found in these families.

Systemic Features: 

First signs and symptoms occur sometime in the first 5 years of life and often in the first year.   In 6 of 7 reported patients the presenting sign was nystagmus but one individual with reported onset of disease at age 5 years presented with ataxia.  Cerebellar signs, both truncal and limb, are usually present and the majority of individuals have evidence of dystonia.  Likewise, pyramidal signs are nearly always present.  Cerebellar dysarthria and titubation are often present with dystonic posturing and torticollis. 

Brain MRIs usually reveal cerebellar atrophy and widespread hypomyelination.  Two individuals in a single family had severe global psychomotor delays as well.  No sensory deficits were reported.  This disorder is progressive and patients in adulthood may require the use of a wheelchair.

Genetics

Homozygous mutations in the NKX6-2 (NKX6-2) gene (10q26.3) are responsible for this disorder.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported for the general condition.

References
Article Title: 

Mutations in NKX6-2 Cause Progressive Spastic Ataxia and Hypomyelination

Chelban V, Patel N, Vandrovcova J, Zanetti MN, Lynch DS, Ryten M, Botia JA, Bello O, Tribollet E, Efthymiou S, Davagnanam I; SYNAPSE Study Group, Bashiri FA, Wood NW, Rothman JE, Alkuraya FS, Houlden H. Mutations in NKX6-2 Cause Progressive Spastic Ataxia and Hypomyelination. Am J Hum Genet. 2017 Jun 1;100(6):969-977.

PubMed ID: 
28575651

Singleton-Merten Syndrome 1

Clinical Characteristics
Ocular Features: 

Several children have been diagnosed with glaucoma in early childhood or during puberty.  Glaucoma surgery has been beneficial in some but visual damage may be severe.

Systemic Features: 

Patients have early-onset calcifications of the aorta and of the aortic and mitral valves which may be seen in childhood and can be responsible for heart failure and early death.  Osteoporosis of the limbs and widened medullary cavities have been seen.  Abnormal bone mineralization and extends to the jaws leading to tooth loss and early-onset periodontal disease.  Eruption of both primary and permanent teeth is delayed but tooth roots can be truncated as well.  The hips dislocate easily due to shallow acetabulae and patients are susceptible to tendon tears.

Hypotonia and generalized weakness may be present which is sometimes exacerbated following a febrile illness.  The skin may be dry and scaly consistent with psoriasis and there may be photosensitivity.

The forehead is broad and prominent and the hairline is high and anterior.  The philtrum is smooth and the upper vermilion is thin.

Genetics

Heterozygous mutations in the IFIH1 gene (2q24.2) are responsible for this disorder.  Another form of Singleton-Merten Syndrome (SGMRT2; 609631) is the result of mutations in the DDX58 gene. 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Treatment is directed at specific problems such as fractures, glaucoma, and periodontal disease.

References
Article Title: 

A specific IFIH1 gain-of-function mutation causes Singleton-Merten syndrome

Rutsch F, MacDougall M, Lu C, Buers I, Mamaeva O, Nitschke Y, Rice GI, Erlandsen H, Kehl HG, Thiele H, Nurnberg P, Hohne W, Crow YJ, Feigenbaum A, Hennekam RC. A specific IFIH1 gain-of-function mutation causes Singleton-Merten syndrome. Am J Hum Genet. 2015 Feb 5;96(2):275-82.

PubMed ID: 
25620204

Cerebral Atrophy, Autosomal Recessive

Clinical Characteristics
Ocular Features: 

Severe visual impairment is noted before one year of age when infants cease following objects in their environment.  Cortical visual impairment has been diagnosed although 'atrophic optic fundi' and hypotrophic optic nerves and fovea have also been described.  Nystagmus has been observed as well.

Systemic Features: 

Microcephaly relative to age norms is evident usually by 2 months of age and there is little subsequent growth of the skull.  Regression of developmental milestones is noted by 4 months of age with signs of irritability, akathisia, spasticity, visual impairment, seizures, and increased startle responses.  Sucking responses and eye-to-eye contact are usually lost by 6 months of age.  Repetitive body stiffening and extension of arms in older individuals consistent with seizure activity has been confirmed by EEG in at least one infant.  Imaging consistently reveals cerebral atrophy with ventriculomegaly and general loss of brain volume. Progressive muscle weakness is evident after about 1 year of age and oral feeding is impaired. There is complete lack of responsive interaction beyond irritability and agitation while motor function is limited to involuntary responses.  Two individuals have lived into the second decade of life.

Genetics

This condition has been described in 4 individuals who were products of consanquineous Amish couples.  Homozygous mutations in the TMPRSS4 gene (11q23.3), whose product is a serine transmembrane protease, seems to be responsible.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

Optic Atrophy, Areflexia, Ataxia, Hearing Loss

Clinical Characteristics
Ocular Features: 

Progressive optic atrophy is a consistent feature of all reported cases.  It may have its onset during the first year or two of life but always before the age of 10 years.  Nystagmus may be seen early during acute febrile episodes but eventually becomes permanent.

Systemic Features: 

Onset of neurological symptoms usually occurs in childhood during or following an acute febrile illness which may be recurrent.  This may consist of cerebellar ataxia, hypotonia, drowsiness, dysarthria, and lethargy.  There may be partial or full recovery following the febrile illness initially but some signs remain after subsequent episodes.  Areflexia and sensorineural deafness can be additional signs and pes cavus eventually appears.

The acute febrile episodes tend to decrease in time along with the progression of neurological signs.  Plantar responses remain normal while peripheral neuropathy and seizures are not consistent features.  MRI imaging of the brain is normal.  Cognitive function usually remains normal but some children have autism features and social adjustment problems have been noted.

Genetics

This is an autosomal dominant condition (which may be considered a form of ‘ataxia-plus’) secondary to heterozygous mutations in the ATP1A3 gene (19q13.31).  The protein product is a subunit of an ATPase enzyme primarily active in neural tissue.

Other mutations in the same gene have been found in dystonia-12 and alternating hemiplegia of childhood.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment is known for this condition but physical therapy and mobility-assistive devices may be helpful.  Low vision aids may be useful as well.

References
Article Title: 

A novel recurrent mutation in ATP1A3 causes CAPOS syndrome

Demos MK, van Karnebeek CD, Ross CJ, Adam S, Shen Y, Zhan SH, Shyr C, Horvath G, Suri M, Fryer A, Jones SJ, Friedman JM; FORGE Canada Consortium. A novel recurrent mutation in ATP1A3 causes CAPOS syndrome. Orphanet J Rare Dis. 2014 Jan 28;9:15.

PubMed ID: 
24468074

Myasthenic Syndromes, Congenital, Including AChR Deficiency

Clinical Characteristics
Ocular Features: 

The congenital myasthenic syndromes are genetically and clinically heterogeneous.  Ptosis is the outstanding ocular sign and virtually always present.  Strabismus and ophthalmoplegia are less common.  These signs are not helpful in the differential diagnosis of the many types of congenital myasthenia.

Some degree of ptosis is usually evident during the first 6 months of life.  By about 2 years of age strabismus and ophthalmoparesis are apparent but this sequence is highly variable.

Systemic Features: 

This is a group of nonprogressive disorders most often associated with acetylcholine receptor (AChR) defects at the neuromuscular junction.  An early sign may be decreased fetal movements.  Generalized weakness, a weak cry, and hypotonia are evident at birth.  Easy fatigability and limb weakness are noted in early childhood and affected children have difficulty running. Facial weakness, dysarthria, weakness of the tongue, and dysphagia are often present and many patients have respiratory difficulties. Motor development can be delayed.  Acute illnesses may exacerbate muscle weakness.

Genetics

This is the most common form of the congenital myasthenic syndromes. It is an autosomal recessive disorder of the postsynaptic type, so called because the mutations occur in genes that encode the subunits of acetylcholine receptors: CHRNE(17P13.2), and CHRNB1(17p13.1).  A similar phenotype results from mutations in MUSK (9p31.3) which is critical for synaptic differentiation.

Mutations in RAPSN(11p11.2), whose protein product is important for stabilization of the acetylcholine receptors at the endplate, may result in a similar phenotype but may also produce the fetal akinesia deformation sequence.  This lethal condition is often associated with severe respiratory disease and dysmorphism including limb contractures, micrognathia, and feeding difficulties.  Nothing is known about the ocular signs.

Another autosomal recessive congenital myasthenic syndrome (610542), CMSTA1, has a somewhat later onset (adolescence) and weakness in a limb girdle distribution but no ptosis or oculomotor problems.  Tubular aggregates of muscle fibers can be seen on biopsy.

Presynaptic autosomal recessive forms of congenital myasthenia such as CMS20 (617143) caused by mutations in SLC5A7 (2q12) and CMS21 (617239) secondary to mutations in SLC18A3 (10q11.23) with severe episodic apnea and ocular signs of ptosis and ophthalmoparesis have been reported.

Other postsynaptic forms of congenital myasthenia are the fast-channel type (FCCNS) (608930) and the slow channel type (SCCMS) (601462).  Ophthalmoparesis occurs early in both types.

The classification of congenital myasthenia syndromes is under construction.  In the case of many types only a single or very few families have been reported.   While the clinical manifestations involve alterations in the neuromuscular junnction, some result from heterozygous mutations while others are due to homozygous changes.  The defect may reside in presynaptic, synaptic, or postsynaptic mechanisms.  For a discussion and comprehensive listing of the various types see 601462.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Cholinesterase inhibitor drugs can be highly beneficial in some forms of the disease but genotyping is necessary before attempting pharmacological therapy.  Frequent ventilation and enteric feeding may be helpful for selected individuals.  Individuals should be protected from acute illnesses, especially respiratory infections.

References
Article Title: 

Impaired Presynaptic High-Affinity Choline Transporter Causes a Congenital Myasthenic Syndrome with Episodic Apnea

Bauche S, O'Regan S, Azuma Y, Laffargue F, McMacken G, Sternberg D, Brochier G, Buon C, Bouzidi N, Topf A, Lacene E, Remerand G, Beaufrere AM, Pebrel-Richard C, Thevenon J, El Chehadeh-Djebbar S, Faivre L, Duffourd Y, Ricci F, Mongini T, Fiorillo C, Astrea G, Burloiu CM, Butoianu N, Sandu C, Servais L, Bonne G, Nelson I, Desguerre I, Nougues MC, Boeuf B, Romero N, Laporte J, Boland A, Lechner D, Deleuze JF, Fontaine B, Strochlic L, Lochmuller H, Eymard B, Mayer M, Nicole S. Impaired Presynaptic High-Affinity Choline Transporter Causes a Congenital Myasthenic Syndrome with Episodic Apnea. Am J Hum Genet. 2016 Sep 1;99(3):753-61.

PubMed ID: 
27569547

Congenital myasthenic syndromes

Hanta?O D, Richard P, Koenig J, Eymard B. Congenital myasthenic syndromes. Curr Opin Neurol. 2004 Oct;17(5):539-51. Review.

PubMed ID: 
15367858

Cataracts, Ataxia, Short Stature, and Mental Retardation

Clinical Characteristics
Ocular Features: 

Cataracts are present in both sexes but the opacification is more extensive in males and only partial in females.  The cataracts are congenital in males but apparently develop later in females who complain of blurred vision from early childhood or during teenage years.  The lenses in females have punctate and pulverulent opacities as well as posterior subcapsular sclerosis.  Vision has been estimated as hand motion from early childhood in boys and about 20/40 in females in the first two decades of life.

Systemic Features: 

Males have mild to moderate mental retardation, muscle hypotonia and weakness with postural tremor.  Their standing position is broad-based and they are unable to sit or stand otherwise without some support.  They are usually unable to walk unassisted.  Speech is dysarthric and its development is delayed.  Females are neurologically normal.

Genetics

A locus containing the disease allele at Xpter-q13.1 cosegregates with the cataract phenotype in both sexes.  The gene mutation has not been identified.  This can be called an X-linked recessive disorder with partial expression in heterozygous females.

Pedigree: 
X-linked recessive, carrier mother
X-linked recessive, father affected
Treatment
Treatment Options: 

Cataract surgery may be indicated in young females and may be beneficial in infant boys.

References
Article Title: 

Organoid Nevus Syndrome

Clinical Characteristics
Ocular Features: 

The sebaceous nevi often involve the eyelids, cornea, and conjunctiva.  Dermoids and lipodermoids are also seen.  Iris and choroidal colobomas are often present.  The sclerae may contain cartilage and bone which can be visible on CAT scans.  Depending upon the structures involved, patients may have strabismus, nystagmus, ptosis, exposure keratitis, and nerve palsies.

 

Systemic Features: 

Phakomatous lesions on the skin seem to preferentially occur on the upper part of the body including the face, neck and scalp but they may occur anywhere on the body including the oral cavity.  Initially they appear as papules but become verrucous around puberty.  Malignant transformation is seen in 15-20 per cent of patients.

Mental retardation and seizures are often seen in the first year of life.  Milestones achieved during that time are often lost subsequently.  Generalized weakness, osteopenia, and intracranial aneurysms are features in some patients.  Bone involvement may be highly asymmetrical.

Biopsies of conjunctival lesions show choristomas containing hyperplastic sebaceous and apocrine glands along with hair follicles.

Genetics

No clear genetic basis exists for this disease.  However, several families with multigenerational involvement have been reported in an autosomal dominant pattern.  It has been suggested that the disorder may result from a dominant lethal gene that allows some patients to survive by chance mosaicism.

Treatment
Treatment Options: 

No treatment is available for the generalized disease but therapy for specific symptoms such as epilepsy may be helpful.

References
Article Title: 

Ophthalmic features of the organoid nevus syndrome

Shields JA, Shields CL, Eagle RC Jr, Arevalo F, De Potter P. Ophthalmic features of the organoid nevus syndrome. Trans Am Ophthalmol Soc. 1996;94:65-86; discussion 86-7. Review.

PubMed ID: 
8981690
Subscribe to RSS - weakness