spasticity

Basel-Vanagaite-Smirin-Yosef Syndrome

Clinical Characteristics
Ocular Features: 

The eyes appear abnormally far apart.  Ptosis, microcornea, congenital cataracts, sparse eyebrows, and strabismus are usually present.  Epicanthal folds are often seen.

Systemic Features: 

Psychomotor development is severely delayed and with delay or absence of milestones.  DTRs are often hyperactive but some infants are described as hypotonic.  Some individuals have seizures.  There may be a nevus flammeus simplex lesion on the forehead and body hair is sparse.  Cleft palate, cardiac septal defects, hypospadius, thin corpus callosum and cerebral ventricular dilation have been observed.  The upper lip may have a tented morphology with everted lower lip vermilion. A short philtrum is common. 

Genetics

A homozygous missense mutation in the MED25 gene (19q13.33) has been reported and the transmission pattern is consistent with autosomal recessive inheritance.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No known treatment has been reported.

References
Article Title: 

Homozygous MED25 mutation implicated in eye-intellectual disability syndrome

Basel-Vanagaite L, Smirin-Yosef P, Essakow JL, Tzur S, Lagovsky I, Maya I, Pasmanik-Chor M, Yeheskel A, Konen O, Orenstein N, Weisz Hubshman M, Drasinover V, Magal N, Peretz Amit G, Zalzstein Y, Zeharia A, Shohat M, Straussberg R, Monte D, Salmon-Divon M, Behar DM. Homozygous MED25 mutation implicated in eye-intellectual disability syndrome. Hum Genet. 2015 Jun;134(6):577-87.

PubMed ID: 
25792360

Epileptic Encephalopathy, Early Infantile 28

Clinical Characteristics
Ocular Features: 

Infants with this lethal neuropathy often have minimal or absent eye contact from birth.  Responses to visual stimuli are often but not always absent.  Optic atrophy may be present and the ERG is abnormal in some individuals. The retinas may have "abnormal" pigmentation while scotopic and photopic flash ERG responses are reduced as are visual evoked potentials indicating delayed visual maturation with severe macular and optic nerve dysfunction. 

Systemic Features: 

Seizures begin within weeks after birth and are resistant to pharmacological treatment.  There is no spontaneous motility and little or no psychomotor development.  Normal developmental milestones are usually not achieved.  Spasticity and hyperreflexia are often present but some newborn infants are hypotonic.  MRI imaging reveals cortical atrophy with hippocampal hypoplasia and a hypoplastic corpus callosum. Progressive microcephaly has been described.

Infants generally do not live beyond two years of age and may die within weeks or a few months. Pulmonary dysfunction can be a significant cause of morbidity. 

Genetics

The transmission pattern is consistent with autosomal recessive inheritance.  Homozygous and compound heterozygous mutations in the WWOX gene (16q23) have been found in several families.

Among the limited number of patients reported, at least two with compound heterozygous mutations had normal brain imaging, appropriate visual responses, and some ability to interact with their environment.  Profound psychomotor delays, however, remained.  Hypotonia replaced spasticity as a neurological feature in some infants.

The same gene is mutated in autosomal recessive spinocerebellar ataxia 12 (614322), a less severe condition in which gaze-evoked nystagmus occurs.

Other forms of epileptic encephalopathy have been reported (see 617105, 617106, and 617113) including Early Onset Epileptic Encephalopathy 48 (617276).  For an autosomal dominant form of epileptic encephalopathy in this database, see Epileptic Encephalopathy, Early Onset 47 (617166).

 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is known for this condition.

References
Article Title: 

WWOX-related encephalopathies: delineation of the phenotypical spectrum and emerging genotype-phenotype correlation

Mignot C, Lambert L, Pasquier L, Bienvenu T, Delahaye-Duriez A, Keren B, Lefranc J, Saunier A, Allou L, Roth V, Valduga M, Moustaine A, Auvin S, Barrey C, Chantot-Bastaraud S, Lebrun N, Moutard ML, Nougues MC, Vermersch AI, Heron B, Pipiras E, Heron D, Olivier-Faivre L, Gueant JL, Jonveaux P, Philippe C. WWOX-related encephalopathies: delineation of the phenotypical spectrum and emerging genotype-phenotype correlation. J Med Genet. 2015 Jan;52(1):61-70..

PubMed ID: 
25411445

Microphthalmia, Syndromic 10

Clinical Characteristics
Ocular Features: 

Microphthalmia seems to be a common feature.  The globes have anterior-posterior dimensions of 5-8 mm.  No internal ocular structures can be visualized and individuals are likely blind.  The corneal diameters in two patients were measured at 3-4 mm.  The optic nerves have been described as ‘slender’ on brain imaging.

Systemic Features: 

Head circumference ranges from the 10th to the 25th percentile at birth  Psychomotor development has been described as normal during the first 6 to 8 months but is followed by rapid deterioration in performance with spasticity, vomiting and continuous crying.  An MRI on one 3 day old patient was reported as normal while at 15 months of age there was atrophy of the vermis and corpus callosum and at 8 years of age the atrophy of these structures was even more extensive.  Similar atrophy patterns were seen in the two other patients and eventually all cerebral while matter is lost and there is atrophy of the brainstem as well. 

Genetics

Three children from 3 consanguineous Pakistani families have been reported but no locus or mutation has been identified.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

Cerebral Atrophy, Autosomal Recessive

Clinical Characteristics
Ocular Features: 

Severe visual impairment is noted before one year of age when infants cease following objects in their environment.  Cortical visual impairment has been diagnosed although 'atrophic optic fundi' and hypotrophic optic nerves and fovea have also been described.  Nystagmus has been observed as well.

Systemic Features: 

Microcephaly relative to age norms is evident usually by 2 months of age and there is little subsequent growth of the skull.  Regression of developmental milestones is noted by 4 months of age with signs of irritability, akathisia, spasticity, visual impairment, seizures, and increased startle responses.  Sucking responses and eye-to-eye contact are usually lost by 6 months of age.  Repetitive body stiffening and extension of arms in older individuals consistent with seizure activity has been confirmed by EEG in at least one infant.  Imaging consistently reveals cerebral atrophy with ventriculomegaly and general loss of brain volume. Progressive muscle weakness is evident after about 1 year of age and oral feeding is impaired. There is complete lack of responsive interaction beyond irritability and agitation while motor function is limited to involuntary responses.  Two individuals have lived into the second decade of life.

Genetics

This condition has been described in 4 individuals who were products of consanquineous Amish couples.  Homozygous mutations in the TMPRSS4 gene (11q23.3), whose product is a serine transmembrane protease, seems to be responsible.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

Temtamy Syndrome

Clinical Characteristics
Ocular Features: 

Bilateral chorioretinal colobomas may be present and involve the optic nerve in one-third of patients.  Visual acuity is not measureable but significant vision impairment is evident in most patients and may be progressive in some individuals.  Several have been reported with dislocated lenses, ptosis, microcornea, cataracts, microphthalmia, myopia, and posterior staphylomas.

Systemic Features: 

Mild, nonspecific craniofacial dysmorphism is often present.  Some form of macrocephaly, with an elongated face, low-set ears, and micrognathia has been reported.  Short stature is of the proportionate type.  Significant developmental delay is evident during childhood and patients are nonverbal. A variety of cardiovascular anomalies such as septal defects, aortic dilation, and patent ductus arteriosus have been described. MRI shows mild hypoplasia of the corpus callosum.   The gait may be ataxic and some (59%) individuals have spasticity of limb muscles with or without contractures.  Seizures develop in early childhood, usually before the age of 3 years, and are difficult to control. 

Genetics

The inconsistent and highly variable phenotype hints that this is a genetically heterogeneous condition.  Many patients seem to have an autosomal recessive condition secondary to mutations in C12orf57 (12p13.31).

A syndrome consisting primarily of colobomas, ptosis, hypertelorism, and global delay (243310) has some similar clinical features but is caused by mutations in ACTG1.

Treatment
Treatment Options: 

No therapy is available for the syndrome but attempts to control the seizures should be made. 

References
Article Title: 

Exome sequencing identifies compound heterozygous mutations in C12orf57 in two siblings with severe intellectual disability, hypoplasia of the corpus callosum, chorioretinal coloboma, and intractable seizures

Platzer K, Huning I, Obieglo C, Schwarzmayr T, Gabriel R, Strom TM, Gillessen-Kaesbach G, Kaiser FJ. Exome sequencing identifies compound heterozygous mutations in C12orf57 in two siblings with severe intellectual disability, hypoplasia of the corpus callosum, chorioretinal coloboma, and intractable seizures. Am J Med Genet A. 2014 May 5. [Epub ahead of print].

PubMed ID: 
24798461

Whole-exome sequencing identifies mutated c12orf57 in recessive corpus callosum hypoplasia

Akizu N, Shembesh NM, Ben-Omran T, Bastaki L, Al-Tawari A, Zaki MS, Koul R, Spencer E, Rosti RO, Scott E, Nickerson E, Gabriel S, da Gente G, Li J, Deardorff MA, Conlin LK, Horton MA, Zackai EH, Sherr EH, Gleeson JG. Whole-exome sequencing identifies mutated c12orf57 in recessive corpus callosum hypoplasia. Am J Hum Genet. 2013 Mar 7;92(3):392-400.

PubMed ID: 
23453666

New autosomal recessive multiple congenital abnormalities/mental retardation syndrome with craniofacial dysmorphism absent corpus callosum, iris colobomas and connective tissue dysplasia

Temtamy SA, Salam MA, Aboul-Ezz EH, Hussein HA, Helmy SA, Shalash BA. New autosomal recessive multiple congenital abnormalities/mental retardation syndrome with craniofacial dysmorphism absent corpus callosum, iris colobomas and connective tissue dysplasia. Clin Dysmorphol. 1996 Jul;5(3):231-40. Review.

PubMed ID: 
8818452

Spastic Ataxia 2

Clinical Characteristics
Ocular Features: 

Horizontal nystagmus is present in some patients.

Systemic Features: 

Cerebellar ataxia, dysarthria, and spasticity of the lower limbs appear in the first two decades of life.  The spasticity may involve all 4 limbs late in life.  Cognition is not impacted. Cervical dystonia has been noted. No consistent changes have been found on brain imaging.  The neurologic signs are slowly progressive although patients may remain ambulatory.

Tremor, clonus, and extrapyramidal chorea has been seen in several families with what has been called spastic paraplegia-58 which may be the same disorder as SPAX2 since mutations are found in the same gene (KIF1C).  Symptoms and prognosis are similar in these conditions except for the reported presence of developmental delay and mild mental retardation in some individuals diagnosed to have SPG58.

Genetics

This is an autosomal recessive condition as the result of homozygous mutations in the KIF1C gene (17p13.2).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No effective treatment for this disease is available although speech and physical therapy may be helpful.

References
Article Title: 

Motor protein mutations cause a new form of hereditary spastic paraplegia

Caballero Oteyza A, Battaloglu E, Ocek L, Lindig T, Reichbauer J, Rebelo AP, Gonzalez MA, Zorlu Y, Ozes B, Timmann D, Bender B, Woehlke G, Zuchner S, Schols L, Schule R. Motor protein mutations cause a new form of hereditary spastic paraplegia. Neurology. 2014 May 7. [Epub ahead of print].

PubMed ID: 
24808017

Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders

Novarino G, Fenstermaker AG, Zaki MS, Hofree M, Silhavy JL, Heiberg AD, Abdellateef M, Rosti B, Scott E, Mansour L, Masri A, Kayserili H, Al-Aama JY, Abdel-Salam GM, Karminejad A, Kara M, Kara B, Bozorgmehri B, Ben-Omran T, Mojahedi F, Mahmoud IG, Bouslam N, Bouhouche A, Benomar A, Hanein S, Raymond L,Forlani S, Mascaro M, Selim L, Shehata N, Al-Allawi N, Bindu PS, Azam M, Gunel M, Caglayan A, Bilguvar K, Tolun A, Issa MY, Schroth J, Spencer EG, Rosti RO, Akizu N, Vaux KK, Johansen A, Koh AA, Megahed H, Durr A, Brice A, Stevanin G, Gabriel SB, Ideker T, Gleeson JG. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science. 2014 Jan 31;343(6170):506-11.

PubMed ID: 
24482476

Cataracts, Congenital, with Brain Hemorrhage and Subependymal Calcification

Clinical Characteristics
Ocular Features: 

Bilateral neonatal leukocoria secondary to dense congenital cataracts (not further characterized) is evident at birth. Microphthalmia and pale optic discs have each been reported in a single patient.

Systemic Features: 

Newborns have catastrophic intracranial hemorrhages with massive cystic destruction of white matter and basal ganglia.  Subependymal calcification can be seen on CT scans.  Most individuals do not live beyond the neonatal period or early infancy.  Hyperreflexia, seizures, and spasticity are frequent clinical features.  Some patients have hepatomegaly and mild renal anomalies in size and location.  The forehead may be prominent and sloping.

Genetics

This is an autosomal recessive disorder resulting from homozygous mutations in the JAM3 (junctional adhesion molecule 3) gene (11q25).  The gene product is one of a family of proteins that contributes to intercellular tight junctions between epithelial cells, among others, and is postulated to be important to vascular permeability as well as lens development.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Delineation of the Clinical, Molecular and Cellular Aspects of Novel JAM3 Mutations Underlying the Autosomal Recessive Hemorrhagic Destruction of the Brain, Subependymal Calcification and Congenital Cataracts

Akawi NA, Canpolat FE, White SM, Quilis-Esquerra J, Sanchez MM, Gamundi MJ, Mochida GH, Walsh CA, Ali BR, Al-Gazali L. Delineation of the Clinical, Molecular and Cellular Aspects of Novel JAM3 Mutations Underlying the Autosomal Recessive Hemorrhagic Destruction of the Brain, Subependymal Calcification and Congenital Cataracts. Hum Mutat. 2012 Dec 15.[Epub ahead of print]

PubMed ID: 
23255084

A homozygous mutation in the tight-junction protein JAM3 causes hemorrhagic destruction of the brain, subependymal calcification, and congenital cataracts

Mochida GH, Ganesh VS, Felie JM, Gleason D, Hill RS, Clapham KR, Rakiec D, Tan WH, Akawi N, Al-Saffar M, Partlow JN, Tinschert S, Barkovich AJ, Ali B, Al-Gazali L, Walsh CA. A homozygous mutation in the tight-junction protein JAM3 causes hemorrhagic destruction of the brain, subependymal calcification, and congenital cataracts. Am J Hum Genet. 2010 Dec 10;87(6):882-9.

PubMed ID: 
21109224

Retinitis Pigmentosa, Hearing Loss, Ataxia, Cataract, and Polyneuropathy

Clinical Characteristics
Ocular Features: 

Cataracts and a pigmentary retinopathy occur in this condition but only in some, primarily older, patients.  The lens opacities progress and may become visually significant by the third decade.  Bone-spicule-shaped pigment clumping may be present in the midperiphery while the optic disk is often pale and the retinal vessels are attenuated. The ERG responses are consistent with a rod-cone dystrophy.

Systemic Features: 

This is a progressive neurological disorder with onset of signs and symptoms in childhood although full expression may not occur until adulthood.  Young children can have hyporeflexia, pes cavus, spasticity, and gait ataxia.  A sensorineural hearing loss may also be present in childhood but sometimes not until later.  Hyperreflexia with extensor plantar responses and Achilles tendon contractures are often present later.  The peripheral polyneuropathy is predominantly demyelinating with both sensory and motor components and is present in all adults.  Cerebellar atrophy, primarily in the vermis, can be demonstrated on MRI examination.  Mental function is usually not impaired. Some patients have dysarthria. 

This disorder has some clinical similarities to Refsum disease (266500).

Genetics

This is an autosomal recessive disorder resulting from homozygous mutations in the ABHD12 gene (20p11.21).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Treatment is directed at symptoms.  Visually significant cataracts may require removal.  Low vision aids and physical therapy can be helpful.

References
Article Title: 

Mutations in ABHD12 cause the neurodegenerative disease PHARC: An inborn error of endocannabinoid metabolism

Fiskerstrand T, H'mida-Ben Brahim D, Johansson S, M'zahem A, Haukanes BI, Drouot N, Zimmermann J, Cole AJ, Vedeler C, Bredrup C, Assoum M, Tazir M, Klockgether T, Hamri A, Steen VM, Boman H, Bindoff LA, Koenig M, Knappskog PM. Mutations in ABHD12 cause the neurodegenerative disease PHARC: An inborn error of endocannabinoid metabolism. Am J Hum Genet. 2010 Sep 10;87(3):410-7.

PubMed ID: 
20797687

Spastic Paraplegia 15

Clinical Characteristics
Ocular Features: 

Yellowish flecks resembling those seen in fundus flavimaculatus are present, primarily in the macular area.   These can be present in large numbers in homozygotes with the full neurological syndrome.  Background retinal pigmentation appears clinically normal but fluorescein angiography shows a strikingly mottled picture with areas of hyper- and hypofluorescence.  Retinal flecks have also been reported in heterozygous parents.

The central macula exhibits autofluorescence.  Standard EOG and ERG recordings are normal but multifocal electroretinography shows subnormal responses in the macular area.  Visual acuity is minimally impacted.

Systemic Features: 

This is a form of spastic paraplegia with progressive spasticity primarily affecting the lower limbs.  Mental retardation (or at least cognitive impairment), dysarthria, a thin corpus callosum, and distal amyotrophy are often present.  Hearing deficits have also been described.  Some but not all patients have tremors, cerebellar ataxia, epilepsy and behavioral disturbances. Onset is between 10 and 19 years of age.  Little is known about the rate of symptom progression.

Genetics

This is an autosomal recessive disorder resulting from mutations in the ZFYVE26 gene (14q24.1).

Spastic paraplegia 7 (607259) has similar neurological features but with ptosis, optic atrophy, and nystagmus.  Congenital cataracts occur in addition to the neurological signs in spastic paraplegia 46 (614409) .

Other disorders with retinal flecks are described in Flecked Retina Syndromes.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

Fleck retina in Kjellin's syndrome

Farmer SG, Longstreth WT Jr, Kalina RE, Todorov AB. Fleck retina in Kjellin's syndrome. Am J Ophthalmol. 1985 Jan 15;99(1):45-50.

PubMed ID: 
3966518

Spastic Ataxia, Optic Atrophy, Mental Retardation

Clinical Characteristics
Ocular Features: 

Optic atrophy is generally but not always present.  Internuclear ophthalmoplegia and nystagmus have been reported. 

Systemic Features: 

This progressive neurodegenerative disorder has its onset in early childhood with delayed psychomotor development, spastic ataxia of the limbs, and dysarthria.  Tremor, dysmetria, and poor coordination of fine movements are often present.  A sensorineural hearing loss has been found in several individuals.  Peripheral neuropathy has been reported as well.  The nature and degree of cognitive impairment has not been quantified.

Genetics

The presence of consanguinity in one family and affected sibs in another suggest autosomal recessive inheritance but nothing is known about the genotype.  The signs and symptoms resemble those found in other spastic ataxias and this may not be a unique disorder.

Optic atrophy is also found in autosomal recessive SPAX4 (613672) and in autosomal dominant SPAX7 (108650).      

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Pages

Subscribe to RSS - spasticity