retinal vessel attenuation

Retinitis Pigmentosa 81

Clinical Characteristics
Ocular Features: 

Patients often complain of night vision problems before the age of 5 years.  Fundus changes of optic nerve pallor, retinal vessel attenuation, and bone spicule pigmentary clumping in the midperiphery are evident by the third decade of life.  Progressive RPE and choroidal atrophy in the macula have been described and may be progressive.  ERG responses are absent from at least 28 years of age.

Systemic Features: 

No systemic abnormalities have been reported.

Genetics

One consanguineous Pakistani family containing 9 affected members with retinal degeneration has been reported.  Homozygosity of a missense mutation in the IFT43 gene (14q24.3) was found in 4 affected sibs.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

A mutation in IFT43 causes non-syndromic recessive retinal degeneration

Biswas P, Duncan JL, Ali M, Matsui H, Naeem MA, Raghavendra PB, Frazer KA, Arts HH, Riazuddin S, Akram J, Hejtmancik JF, Riazuddin SA, Ayyagari R. A mutation in IFT43 causes non-syndromic recessive retinal degeneration. Hum Mol Genet. 2017 Dec 1;26(23):4741-4751.

PubMed ID: 
28973684

Retinal Dystrophy with or without Macular Staphyloma

Clinical Characteristics
Ocular Features: 

Few patients have had complete eye studies and physical findings are seemingly limited to the eye.  Patients complain of progressively decreasing vision as early as the first decade of life.  Abnormal retinal findings may be present by the second decade and maybe earlier.  The RPE can appear mottled and the retinal vessels are attenuated.  Retinal pigment clumping occurs later.  Night blindness and visual field constriction occur.  Cone and flicker ERGs may be nonrecordable while rod and flash ERGs are reduced consistent with a rod-cone dystrophy.  The retinal lamination has been described as abnormal on OCT in some individuals.

Macular staphylomas have been described in three unrelated offspring of consanguineous parents.

Vision loss is severe with legal blindness by midlife and one patient lost light perception by 40 years of age.  

Systemic Features: 

No consistent systemic abnormalities have been reported.

Genetics

Homozygous or compound heterozygous mutations in the C21orf2 gene (21q22.3) are the cause of this autosomal recessive syndrome.

Homozygous or heterozygous mutations in the same gene are responsible for axial spondylometaphyseal dysplasia (602271).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Retinitis Pigmentosa 42

Clinical Characteristics
Ocular Features: 

The fundus phenotype of retinitis pigmentosa appears late.  Night vision difficulties are prominent symptoms but the age of onset is unknown. Reduction in visual acuity is variable and is usually not manifest until 50 years of age but it may remain near normal or in that range for another decade or two.  Concentric constriction (within 10-20 central degrees) in peripheral fields can be a presenting symptom and may not appear until age 65 years of age.  Patches of visual field retention can sometimes be demonstrated in the periphery.  Rod and cone full field ERG amplitudes are substantially reduced

Systemic Features: 

None.

Genetics

Heterozygous mutations in KLHL7 (7p15.3) segregate with the clinical phenotype.

Homozygous mutations in the KLHL7 gene cause cold-induced sweating syndrome 3 (CISS3) (617055).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

None known.

References
Article Title: 

Mutations in a BTB-Kelch protein, KLHL7, cause autosomal-dominant retinitis pigmentosa

Friedman JS, Ray JW, Waseem N, Johnson K, Brooks MJ, Hugosson T, Breuer D, Branham KE, Krauth DS, Bowne SJ, Sullivan LS, Ponjavic V, Granse L, Khanna R, Trager EH, Gieser LM, Hughbanks-Wheaton D, Cojocaru RI, Ghiasvand NM, Chakarova CF, Abrahamson M, Goring HH, Webster AR, Birch DG, Abecasis GR, Fann Y, Bhattacharya SS, Daiger SP, Heckenlively JR, Andreasson S, Swaroop A. Mutations in a BTB-Kelch protein, KLHL7, cause autosomal-dominant retinitis pigmentosa. Am J Hum Genet. 2009 Jun;84(6):792-800.

PubMed ID: 
19520207

Retinitis Pigmentosa 75

Clinical Characteristics
Ocular Features: 

Symptoms of night blindness and tunnel vision (restricted peripheral fields) are present in the first decade of life.  The fundus appearance is typical for retinitis pigmentosa.  Attenuated retinal vessels with a bone spicule pattern of pigment clumping are present.  Evidence of optic atrophy with waxy pallor of the disc is usually visible.   High myopia (>6 diopters) is frequently present.

Systemic Features: 

No systemic disease has been associated with this disorder.

Genetics

This condition generally follows an autosomal recessive inheritance pattern as the result of homozygous mutations in the AGBL5 gene (2p23).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Expanding the clinical, allelic, and locus heterogeneity of retinal dystrophies

Patel N, Aldahmesh MA, Alkuraya H, Anazi S, Alsharif H, Khan AO, Sunker A, Al-Mohsen S, Abboud EB, Nowilaty SR, Alowain M, Al-Zaidan H, Al-Saud B, Alasmari A, Abdel-Salam GM, Abouelhoda M, Abdulwahab FM, Ibrahim N, Naim E, Al-Younes B, E AlMostafa A, AlIssa A, Hashem M, Buzovetsky O, Xiong Y, Monies D, Altassan N, Shaheen R, Al-Hazzaa SA, Alkuraya FS. Expanding the clinical, allelic, and locus heterogeneity of retinal dystrophies. Genet Med. 2016 Jun;18(6):554-62.

PubMed ID: 
26355662

Retinitis Pigmentosa 71

Clinical Characteristics
Ocular Features: 

Night blindness is noted in the first or second decades of life.  The fundus picture in this condition resembles classic retinitis pigmentosa with attenuated vessels, RPE anomalies with bone spicule clumping and areas of atrophy, and optic disc pallor.  Several patients had optic nerve drusen.  The retina appears to have microcysts, especially in the macula, and the outer retina is thinned.  

Systemic Features: 

Only a few patients have been reported with this form of RP and the full phenotype is unknown.  Some individuals are obese and one patient in addition had postaxial polydactyly and hypercholesterolemia suggestive of a Bardet-Biedl-like phenotype.  No reported patients have had rib dysplasia.

Genetics

Homozygous or compound heterozygous mutations in the IFT172 gene (2p23.3) have been identified in this condition.

The same gene is mutated in the recessive short-rib thoracic dysplasia 10 syndrome with or without polydactyly (615630).  Individuals with the short-rib syndrome may have night blindness and fundus changes resembling retinitis pigmentosa.

Because of the phenotypic overlap with other conditions such as Bardet-Biedl syndrome, the short-rib thoracic 10 syndrome (615630), Majewski syndrome (263520), Jeune syndrome (208520), short-rib thoracic dysplasia 9 (266920), and certain types of polycystic diseases of the kidney with abnormalities of the cilia, it has been suggested that RP71 should be classified as a syndromic ciliopathy.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome

Bujakowska KM, Zhang Q, Siemiatkowska AM, Liu Q, Place E, Falk MJ, Consugar M, Lancelot ME, Antonio A, Lonjou C, Carpentier W, Mohand-Said S, den Hollander AI, Cremers FP, Leroy BP, Gai X, Sahel JA, van den Born LI, Collin RW, Zeitz C, Audo I, Pierce EA. Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome. Hum Mol Genet. 2015 Jan 1;24(1):230-42.

PubMed ID: 
25168386

Chorioretinopathy with Microcephaly 2

Clinical Characteristics
Ocular Features: 

Microphthalmia and microcornea are seen in most individuals and one patient had unilateral clinical anophthalmia. Hyperopia and cataracts may be present. Nystagmus is common.  One patient had a corneal opacity.  The chorioretinopathy has not been described beyond evidence of the maculopathy, attenuated retinal vessels, and occasionally hyperpigmented zones.  The ERG is either not recordable or consistent with a severe rod-cone dystrophy.  Vitreous inclusions and a 'vitreoretinal dystrophy' with falciform retinal folds were noted in several patients.  A traction detachment was present in one and bilateral serous detachments were noted in another.

Systemic Features: 

Patients have mild to severe microcephaly (up to -15 SD) with psychomotor delays.  Profound intellectual disability is a consistent feature.  Physical growth is retarded and patients have shortness of stature.  Most patients are unable to sit, stand, or walk unassisted.  One patient died at 5.5 years of age while another was alive at 20 years of age.  Rare patients may have hearing loss and seizures.

Scoliosis, kyphosis, and lordosis may be seen while  other skeletal malformations seem to occur sporadically e.g., triphalangeal thumbs, brachydactyly, postaxial polydactyly, and restricted large joint motion.  

The forehead slopes markedly.  Neuroimaging shows a consistent reduction in cortex size with simple gyral folding while the cerebellum and the brain stem are also small.  Subarachnoid cysts have been noted in several patients and the corpus callosum may be short or otherwise malformed.

Genetics

Homozygous mutations in the PLK4 gene (4q28.2) segregate with this condition.  Its product localizes to centrioles and plays a central role in centriole duplication.

For a somewhat similar condition but without the sloping forhead see Chorioretinoapathy with Microcephaly 1 (251270) but resulting from homozygous mutations in TUBGCP6.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is know.

References
Article Title: 

Mutations in PLK4, encoding a master regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy

Martin CA, Ahmad I, Klingseisen A, Hussain MS, Bicknell LS, Leitch A, Nurnberg G, Toliat MR, Murray JE, Hunt D, Khan F, Ali Z, Tinschert S, Ding J, Keith C, Harley ME, Heyn P, Muller R, Hoffmann I, Daire VC, Dollfus H, Dupuis L, Bashamboo A, McElreavey K, Kariminejad A, Mendoza-Londono R, Moore AT, Saggar A, Schlechter C, Weleber R, Thiele H, Altmuller J, Hohne W, Hurles ME, Noegel AA, Baig SM, Nurnberg P, Jackson AP. Mutations in PLK4, encoding a master regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy. Nat Genet. 2014 Dec;46(12):1283-92.

PubMed ID: 
25344692
Subscribe to RSS - retinal vessel attenuation