macroglossia

Hypotonia, Infantile, with Psychomotor Retardation and Characteristic Facies 3

Clinical Characteristics
Ocular Features: 

Deep-set eyes with highly arched eyebrows have been described and poor fixation can be present.  Cortical visual impairment has been described.

Systemic Features: 

The neurologic abnormalities become evident soon after birth.  Hypotonia and decreased reflexes may be present early and often there is little psychomotor development subsequently.  Some patients have no or very little speech and may never sit, stand, or walk.  However, there is considerable variation in the clinical picture and other individuals are able to walk and may live into the third decade.  Brain imaging reveals a variety of abnormalities including cerebellar and cerebral hypoplasia.  Respiratory difficulties and poor feeding are often present.

The facial dysmorphism may include brachycephaly with a broad forehead and narrowing of the temporal regions.  The nose may be small and the mouth appears large in the presence of micrognathia and a thin upper lip.

Genetics

This is an autosomal recessive condition as the result of homozygous or compound heterozygous mutations in the TBCK gene (4q24). 

Other similar conditions include IHPRF2 (616801) (with homozygous mutations in UNC80 and IHPRF1 (615419) (with homozygous mutations in NALCN) whose ocular features may include strabismus, nystagmus, and poor visual fixation.    

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available.

References
Article Title: 

Mutations in TBCK, Encoding TBC1-Domain-Containing Kinase, Lead to a Recognizable Syndrome of Intellectual Disability and Hypotonia

Bhoj EJ, Li D, Harr M, Edvardson S, Elpeleg O, Chisholm E, Juusola J, Douglas G, Guillen Sacoto MJ, Siquier-Pernet K, Saadi A, Bole-Feysot C, Nitschke P, Narravula A, Walke M, Horner MB, Day-Salvatore DL, Jayakar P, Vergano SA, Tarnopolsky MA, Hegde M, Colleaux L, Crino P, Hakonarson H. Mutations in TBCK, Encoding TBC1-Domain-Containing Kinase, Lead to a Recognizable Syndrome of Intellectual Disability and Hypotonia. Am J Hum Genet. 2016 Apr 7;98(4):782-8.

PubMed ID: 
27040691

Recessive Inactivating Mutations in TBCK, Encoding a Rab GTPase-Activating Protein, Cause Severe Infantile Syndromic Encephalopathy

Chong JX, Caputo V, Phelps IG, Stella L, Worgan L, Dempsey JC, Nguyen A, Leuzzi V, Webster R, Pizzuti A, Marvin CT, Ishak GE, Ardern-Holmes S, Richmond Z; University of Washington Center for Mendelian Genomics, Bamshad MJ, Ortiz-Gonzalez XR, Tartaglia M, Chopra M, Doherty D. Recessive Inactivating Mutations in TBCK, Encoding a Rab GTPase-Activating Protein, Cause Severe Infantile Syndromic Encephalopathy. Am J Hum Genet. 2016 Apr 7;98(4):772-81.

PubMed ID: 
27040692

Tenorio Syndrome

Clinical Characteristics
Ocular Features: 

The eyebrows appear bushy.  Inflammation of the limbus and keratoconjunctivitis sicca are often present and reported to resemble Sjogren syndrome.

Systemic Features: 

Infants appear large at birth with a large forehead and macrocephaly.  Birth weight, length, and head circumference are usually above the 97th percentile. The mandible appears large and the lips are full and ‘fleshy’.  Dentition is delayed.  Recurrent stomatitis and gastroesophageal reflux have been noted.  Closure of the fontanels is delayed.  Hypotonia and hyperflexible joints can be a feature.

Multiple brain anomalies have been described including cortical atrophy, dilated and asymmetrical ventricles, and mild hydrocephalus.  Psychomotor development and milestones are delayed.  Intellectual disabilities, syncope, hypoglycemia, seizures, apneic episodes, mood anomalies, abnormal gait, and general clumsiness may be present.  There was considerable clinical variation among the six reported patients. 

Genetics

Heterozygous mutations in RNF125 (18q12.1) are responsible for this syndrome. 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment is known.

References
Article Title: 

A new overgrowth syndrome is due to mutations in RNF125

Tenorio J, Mansilla A, Valencia M, Martinez-Glez V, Romanelli V, Arias P, Castrejon N, Poletta F, Guillen-Navarro E, Gordo G, Mansilla E, Garcia-Santiago F, Gonzalez-Casado I, Vallespin E, Palomares M, Mori MA, Santos-Simarro F, Garcia-Minaur S, Fernandez L, Mena R, Benito-Sanz S, del Pozo A, Silla JC, Ibanez K, Lopez-Granados E, Martin-Trujillo A, Montaner D; SOGRI Consortium, Heath KE, Campos-Barros A, Dopazo J, Nevado J, Monk D, Ruiz-Perez VL, Lapunzina P. A new overgrowth syndrome is due to mutations in RNF125. Hum Mutat. 2014 Dec;35(12):1436-41.

PubMed ID: 
25196541

Mannosidosis, Alpha B

Clinical Characteristics
Ocular Features: 

Many (probably most) patients have lens opacities and some have corneal opacities as well.  Nystagmus and strabismus have been described.  Pigmentary changes of a mottled nature can be present in the posterior pole and may be associated with retinal vessel attenuation and diminished ERG responses.  Retinal thinning can be demonstrated.  A mixture of hypo- and hyperautofluorescence is often visible.  Mild optic atrophy has been seen.  There is evidence for progressive visual loss, even late in life.  Eyebrows appear thick.    

Systemic Features: 

Mannosidosis is a highly variable multisystem disorder.  Onset may be in infancy but in other patients symptoms appear later in the first decade.  Progression of disease is more rapid in individuals with early onset (type 3) with rapid mental, motor deterioration and early death.  The characteristic coarse facial features usually are evident later in milder cases (types 1 and 2) that have mild or moderate intellectual disabilities.  Regardless, mannosidosis is relentlessly progressive with mental deterioration and motor disabilities.  Ataxia is a common feature.  Dental anomalies (diastema), large ears, macroglossia, joint stiffness,, hepatosplenomegaly, enlarged head circumference, hearing loss (sensorineural), increased susceptibility to infections, dysarthria, and spondylolysis may be present.

Genetics

Alpha-mannosidoosis is an autosomal recessive lysosomal storage disorder resulting from mutations in the MAN2B1 gene (19p13.2).  There is another form of mannosidosis known as beta A  (248510) caused by mutations in MANBA but ocular features have not been reported.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Prompt treatment for infections is required and prophylactic vaccinations are indicated.  All individuals should be seen annually and assistive devices such as wheel chairs and hearing aids prescribed when needed.

References
Article Title: 

Retinal and optic nerve degeneration in α-mannosidosis

Matlach J, Zindel T, Amraoui Y, Arash-Kaps L, Hennermann JB, Pitz S. Retinal and optic nerve degeneration in a-mannosidosis. Orphanet J Rare Dis. 2018 Jun 1;13(1):88. doi: 10.1186/s13023-018-0829-z.

PubMed ID: 
29859105

Ocular findings in mannosidosis

Arbisser AI, Murphree AL, Garcia CA, Howell RR. Ocular findings in mannosidosis. Am J Ophthalmol. 1976 Sep;82(3):465-71. PubMed PMID: 961797.

PubMed ID: 
961797

Neuraminidase Deficiency

Clinical Characteristics
Ocular Features: 

A cherry red spot is may be seen in late childhood or early adolescence.  It occurs in nearly 100% of patients with type I while only 75% of type II patients have this feature possibly because their early death from the more severe systemic disease prevents full ascertainment.  Visual acuity is reduced, sometimes severely.  Some but not all individuals have corneal and lens opacities.  A subtle corneal haze has also been seen.  Nystagmus has been reported. 

Systemic Features: 

This is a neurodegenerative disorder with progressive deterioration of muscle and central nervous system functions.  Myoclonus, mental deterioration, hepatosplenomegaly, muscle weakness and atrophy are common.  The defect in neuraminidase activity leads to abnormal amounts of sialyl-oligosaccharides in the urine.  Spinal deformities such as kyphosis are common.  Deep tendon reflexes are exaggerated.  Ataxia and hearing loss may be present.  Coarse facies, a barrel chest, and short stature are characteristic.  Hepatic cells contain numerous vacuoles and numerous inclusions.

Sialidosis types I and II are both caused by mutations in the neuroaminidase gene.  Type I is associated with milder disease than type II which has an earlier age of onset and may present in infancy or even begin in utero.  Early death within two years of age is common in the congenital or infantile forms.  There is, however, significant variability in age of onset and the course of disease among types. 

Genetics

The sialidoses are autosomal recessive lysosomal storage disorders resulting from mutations in the NEU1 gene (6p21.3) which lead to an intracellular accumulation of glycoproteins containing sialic acid residues.  Both types I and II are caused by mutations in the same gene. 

Treatment
Treatment Options: 

Treatment is focused on symptom management. 

References
Article Title: 

Sandhoff Disease

Clinical Characteristics
Ocular Features: 

Retinal ganglion cells are rendered dysfunctional from the toxic accumulation of intra-lysosomal GM2 ganglioside molecules causing early visual symptoms.  These cells in high density around the fovea centralis create a grayish-white appearance.  Since ganglion cells are absent in the foveolar region, this area retains the normal reddish appearance, producing the cherry-red spot.  Axonal decay and loss of the ganglion cells leads to optic atrophy and blindness. 

Systemic Features: 

Sandhoff disease may be clinically indistinguishable from Tay-Sachs disease even though the same enzyme is defective (albeit in separate subunits A and B that together comprise the functional enzymes).  The presence of hepatosplenomegaly in Sandoff disease may be distinguishing. The infantile form of this lysosomal storage disease seems to be the most severe.  Infants appear to be normal until about 3-6 months of age when neurological development slows and muscles become weak.  Seizures, loss of interest, and progressive paralysis begin after this together with loss of vision and hearing.  An exaggerated startle response is considered an early and helpful sign in the diagnosis.  Among infants with early onset disease, death usually occurs by 3 or 4 years of age.   

Ataxia with spinocerebellar degeneration, motor neuron disease, dementia, and progressive dystonia are more common in individuals with later onset of neurodegeneration.  The juvenile and adult-onset forms of the disease also progress more slowly.  

Genetics

Sandhoff disease results from mutations in the beta subunit of the hexosaminidase A and B enzymes.  It is an autosomal recessive disorder caused by mutations in HEXB (5q13). 

Tay-Sachs disease (272800) can be clinically indistinguishable from Sandoff disease and they are allelic disorders.  However, the mutation in Tay-Sachs (272800) is in HEXA resulting in dysfunction of the alpha subunit of hexosaminidase A enzyme. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No specific treatment is available beyond general support with proper nutrition and maintainence of airways.  Anticonvulsants may be helpful in some stages.  Gene therapy in fibroblast cultures has achieved some restoration of  hexosaminidase A activity in Tay-Sachs disease and may have potential in Sandhoff disease as well. 

References
Article Title: 

Tay-Sachs Disease

Clinical Characteristics
Ocular Features: 

Retinal ganglion cells become dysfunctional as a result of the toxic accumulation of intra-lysosomal GM2 ganglioside molecules causing early visual symptoms.  These cells in high density around the fovea centralis create a grayish-white appearance.  Since ganglion cells are absent in the foveolar region, this area retains the normal reddish appearance, producing the cherry-red spot.  Axonal decay and loss of the ganglion cells leads to optic atrophy and blindness.

Systemic Features: 

Sandoff disease may be clinically indistinguishable from Tay-Sachs disease even though the same enzyme is defective (albeit in separate subunits A and B that together comprise the functional hexosaminidase enzyme).   The infantile form of this lysosomal storage disease is the most common.  Infants appear to be normal until about 3-6 months of age when neurological development slows and muscles become weak.  Seizures, loss of interest, and progressive paralysis begin after this together with loss of vision and hearing.  The facies are coarse and the tongue is enlarged.  An exaggerated startle response is considered an early and helpful sign in the diagnosis.  Hepatosplenomegaly is usually not present.  Among infants with early onset disease, death usually occurs by 3 or 4 years of age.     

Ataxia with spinocerebellar degeneration, motor neuron disease, and progressive dystonia are more common in individuals with later onset of neurodegeneration.  The juvenile and adult-onset forms of the disease also progress more slowly.

Genetics

Tay-Sachs disease is an autosomal recessive disorder caused by mutations in the hexosaminidase A gene, HEXA, (15q23-q24).  The altered enzyme is unable to break down GM2 ganglioside which accumulates in lysosomes and leads to neuronal death.

A related form, clinically and biochemically similar to Tay-Sachs disease , is GM2-gangliosidosis (272750) but it is caused by mutations in GM2A (5q31.3-q33.1) with normal hexosaminidase A and B.  Sandhoff disease (268800) is clinically indistinguishable but caused by mutations in the beta subunit of hexosaminidase (HEXB) A and B at 5q13. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Treatment is largely supportive.  Anticonvulsant pharmaceuticals may help in the control of seizures but require frequent modifications as the neuronal degeneration progresses.  Airways and nutrition maintainence are important.

Application of gene therapy to cell cultures have shown promise in restoring enzyme function and may someday lead to human treatment. 

    

References
Article Title: 

Tay-Sachs disease

Fernandes Filho JA, Shapiro BE. Tay-Sachs disease. Arch Neurol. 2004 Sep;61(9):1466-8. Review.

PubMed ID: 
15364698
Subscribe to RSS - macroglossia