corpus callosum agenesis

Gaze Palsy, Familial Horizontal, with Progressive Scoliosis 2

Clinical Characteristics
Ocular Features: 

Strabismus is present at birth.  Horizontal eye movements are restricted but vertical gaze can be normal.  The optic nerves appear normal.

Systemic Features: 

Hypotonia may be noted at birth but ankle clonus and spasticity can develop later.  Progressive kyphoscoliosis has been diagnosed as early as the age of 4 years and may result in restrictive lung disease requiring spine surgery by the second decade of life.  Developmental milestones such as walking and talking are delayed and intellectual development is subnormal.  Mirror movements may be present.  Gait may be unsteady but can be normal.

Brain MRI reveals a variety of malformations.  Agenesis of the corpus callosum is present and the white matter tracts appear disorganized.  The superior cerebellar peduncles fail to decussate and transverse pontine fibers may be absent.  The pons and midbrain are hypoplastic while there is a midline cleft throughout the brainstem resulting in a butterfly-shaped medulla.

Genetics

Homozygous mutations in the DCC gene (18q21) are responsible for this condition.  Three patients in 2 unrelated consanguineous families have been reported.  Studies suggest that the DCC gene product is important for forebrain and brainstem midline crossing of neurons.

See Gaze Palsy, Familial Horizontal, with Progressive Scoliosis 1 (607313) for another disorder with somewhat similar features.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Biallelic mutations in human DCC cause developmental split-brain syndrome

Jamuar SS, Schmitz-Abe K, D'Gama AM, Drottar M, Chan WM, Peeva M, Servattalab S, Lam AN, Delgado MR, Clegg NJ, Zayed ZA, Dogar MA, Alorainy IA, Jamea AA, Abu-Amero K, Griebel M, Ward W, Lein ES, Markianos K, Barkovich AJ, Robson CD, Grant PE, Bosley TM, Engle EC, Walsh CA, Yu TW. Biallelic mutations in human DCC cause developmental split-brain syndrome. Nat Genet. 2017 Apr;49(4):606-612.

PubMed ID: 
28250456

Congenital Heart Defects, Dysmorphic Facies, and Intellectual Developmental Disorder

Clinical Characteristics
Ocular Features: 

The dysmorphic facial features primarily involve the periocular structures.  These include hypertelorism, ptosis, epicanthal folds, strabismus and upslanted palpebral fissures.

Systemic Features: 

Septal defects involving both the atrium and the ventricle are consistently present.  Pulmonary valve abnormalities are present in some patients.

Posteriorly rotated pinnae and a small mouth with a thin upper lip have been observed.  Camptodactyly and clinodactyly are common.  Some patients have mild microcephaly.

Global developmental delay is a consistent feature manifest as delays in walking and speech and eventual intellectual disability.  Feeding difficulties are common.  Hypotonia and hypermobile joints are often noted.  Imaging of the brain may reveal agenesis of the corpus callosum, incomplete formation of the inferior vermis, and leukomalacia of periventricular tissue.

Genetics

Heterozygous mutations have been identified in the CDK13 gene (7p14.1) in seven unrelated individuals.  Heterozygous parents may not have the full phenotype.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No treatment is available for the generalized condition.

References
Article Title: 

Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing

Sifrim A, Hitz MP, Wilsdon A, Breckpot J, Turki SH, Thienpont B, McRae J, Fitzgerald TW, Singh T, Swaminathan GJ, Prigmore E, Rajan D, Abdul-Khaliq H, Banka S, Bauer UM, Bentham J, Berger F, Bhattacharya S, Bu'Lock F, Canham N, Colgiu IG, Cosgrove C, Cox H, Daehnert I, Daly A, Danesh J, Fryer A, Gewillig M, Hobson E, Hoff K, Homfray T; INTERVAL Study., Kahlert AK, Ketley A, Kramer HH, Lachlan K, Lampe AK, Louw JJ, Manickara AK, Manase D, McCarthy KP, Metcalfe K, Moore C, Newbury-Ecob R, Omer SO, Ouwehand WH, Park SM, Parker MJ, Pickardt T, Pollard MO, Robert L, Roberts DJ, Sambrook J, Setchfield K, Stiller B, Thornborough C, Toka O, Watkins H, Williams D, Wright M, Mital S, Daubeney PE, Keavney B, Goodship J; UK10K Consortium., Abu-Sulaiman RM, Klaassen S, Wright CF, Firth HV, Barrett JC, Devriendt K, FitzPatrick DR, Brook JD; Deciphering Developmental Disorders Study., Hurles ME. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat Genet. 2016 Sep;48(9):1060-5.

PubMed ID: 
27479907

Vici Syndrome

Clinical Characteristics
Ocular Features: 

Congenital cataracts, both unilateral and bilateral are common.  The fundus appears hypopigmented. Nystagmus, optic neuropathy, and mild ptosis have been reported.  Nothing is known regarding acuity. 

Systemic Features: 

Infants at birth have striking hypotonia with a weak cry and feeding difficulties.  Dysmorphic features such as micrognathia, microcephaly, low-set ears, some degree of generalized hypopigmentation (hair and skin), and a broad nose with a long philtrum may be present. The face may appear triangular.  Cleft lip and palate may be present.  Evidence of cardiac dysfunction may also be present early with both dilated and hypertrophic cardiomyopathy reported.  Hearing loss has been reported in some individuals.  Recurrent infections are common and immunologic studies have revealed, in some patients, granulocytopenia, low T cell counts (primarily T4+ cells), thymic dysplasia, and low levels of IgG.  Seizures may occur.  Liver dysfunction has been variably reported.

Neurological and brain evaluations have reported agenesis of the corpus callosum, defects in the septum pellucidum, and hypoplasia of the cerebellar vermis along with pontocerebellar hypoplasia.  Psychomotor retardation is severe in most individuals along with general growth retardation.

Histologic studies of skeletal muscle fibers have shown considerable variation in fiber size, centralized nuclei, fucsinophilic inclusions, and enlarged abnormal mitochondria.  Other central nervous system abnormalities include in some individuals a paucity of white matter, schizencephaly, neuronal heterotopias, and enlargement of the ventricles.

The cumulative effects of these multiorgan abnormalities lead to death within the first year or two of life, generally of heart failure or sepsis. 

Genetics

Homozygous or compound heterozygous mutations in the EPG5 gene (18q12.3) have been associated with this condition.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Vici syndrome: a

Byrne S, Dionisi-Vici C, Smith L, Gautel M, Jungbluth H. Vici syndrome: a
review
. Orphanet J Rare Dis. 2016 Feb 29;11(1):

PubMed ID: 
4772338

Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy

Cullup T, Kho AL, Dionisi-Vici C, Brandmeier B, Smith F, Urry Z, Simpson MA, Yau S, Bertini E, McClelland V, Al-Owain M, Koelker S, Koerner C, Hoffmann GF, Wijburg FA, ten Hoedt AE, Rogers RC, Manchester D, Miyata R, Hayashi M, Said E, Soler D, Kroisel PM, Windpassinger C, Filloux FM, Al-Kaabi S, Hertecant J, Del Campo M, Buk S, Bodi I, Goebel HH, Sewry CA, Abbs S, Mohammed S, Josifova D, Gautel M, Jungbluth H. Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy. Nat Genet. 2013 Jan;45(1):83-7.

PubMed ID: 
23222957
Subscribe to RSS - corpus callosum agenesis