brain malformations

Optic Atrophy 11

Clinical Characteristics
Ocular Features: 

Optic atrophy is seen as early as 5 years of age but may be congenital in origin as hypoplasia of the optic nerve was present in all patients.  Three of 4 affected children also were myopic.

Systemic Features: 

This is a form of mitochondriopathy with considerable clinical heterogeneity.  A single consanguineous family with 4 affected children of ages 5-16 years of age has been reported.

Common features include short stature, microcephaly (1 had macrocephaly), hearing impairment. Ataxia, dysmetria, and athetotic movements may be present.  Motor and mental development are delayed as is expressive speech.  Intellectual disability is present in all 4 patients.  Leukoencephalopathy was seen in all patients and one had brain atrophy.  Cerebellar hypoplasia was present in 2 of four patients.

Muscle mitochondria in one patient had morphologic changes.  Lactate levels and lactate/pyruvate ratios were elevated in the blood and CSF fluid of three patients.

Genetics

Homozygous mutations in the YME1L1 gene (10p12.1) were responsible for this condition in 4 offspring of a consanguineous Saudi Arabian family.   This is a nuclear encoded mitochondrial gene.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.Hom

References
Article Title: 

Chorioretinopathy with Microcephaly 2

Clinical Characteristics
Ocular Features: 

Microphthalmia and microcornea are seen in most individuals and one patient had unilateral clinical anophthalmia. Hyperopia and cataracts may be present. Nystagmus is common.  One patient had a corneal opacity.  The chorioretinopathy has not been described beyond evidence of the maculopathy, attenuated retinal vessels, and occasionally hyperpigmented zones.  The ERG is either not recordable or consistent with a severe rod-cone dystrophy.  Vitreous inclusions and a 'vitreoretinal dystrophy' with falciform retinal folds were noted in several patients.  A traction detachment was present in one and bilateral serous detachments were noted in another.

Systemic Features: 

Patients have mild to severe microcephaly (up to -15 SD) with psychomotor delays.  Profound intellectual disability is a consistent feature.  Physical growth is retarded and patients have shortness of stature.  Most patients are unable to sit, stand, or walk unassisted.  One patient died at 5.5 years of age while another was alive at 20 years of age.  Rare patients may have hearing loss and seizures.

Scoliosis, kyphosis, and lordosis may be seen while  other skeletal malformations seem to occur sporadically e.g., triphalangeal thumbs, brachydactyly, postaxial polydactyly, and restricted large joint motion.  

The forehead slopes markedly.  Neuroimaging shows a consistent reduction in cortex size with simple gyral folding while the cerebellum and the brain stem are also small.  Subarachnoid cysts have been noted in several patients and the corpus callosum may be short or otherwise malformed.

Genetics

Homozygous mutations in the PLK4 gene (4q28.2) segregate with this condition.  Its product localizes to centrioles and plays a central role in centriole duplication.

For a somewhat similar condition but without the sloping forhead see Chorioretinoapathy with Microcephaly 1 (251270) but resulting from homozygous mutations in TUBGCP6.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is know.

References
Article Title: 

Mutations in PLK4, encoding a master regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy

Martin CA, Ahmad I, Klingseisen A, Hussain MS, Bicknell LS, Leitch A, Nurnberg G, Toliat MR, Murray JE, Hunt D, Khan F, Ali Z, Tinschert S, Ding J, Keith C, Harley ME, Heyn P, Muller R, Hoffmann I, Daire VC, Dollfus H, Dupuis L, Bashamboo A, McElreavey K, Kariminejad A, Mendoza-Londono R, Moore AT, Saggar A, Schlechter C, Weleber R, Thiele H, Altmuller J, Hohne W, Hurles ME, Noegel AA, Baig SM, Nurnberg P, Jackson AP. Mutations in PLK4, encoding a master regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy. Nat Genet. 2014 Dec;46(12):1283-92.

PubMed ID: 
25344692

Neu-Laxova Syndrome 1

Clinical Characteristics
Ocular Features: 

The globes are prominent, an appearance that is exaggerated sometimes by absence of the eyelids or ectropion.  The lashes may be absent in other patients.  Cloudy corneas and cataracts have been described.

Systemic Features: 

This is a lethal dysplasia-malformation syndrome in which some infants are stillborn while others do not live beyond a few days.  The placenta is often small and the umbilical cord is short.  Decreased fetal movements and polyhydramnios are often noted.  Microcephaly can be striking at birth but there is overall intrauterine growth retardation.  The skin is ichthyotic and dysplastic containing excess fatty tissue beneath the epidermis.  Digits are often small and may be fused (syndactyly).  There is generalized edema with ‘puffiness’ of the hands and feet.  The lungs are frequently underdeveloped and cardiac defects such as septal openings, patent ductus arteriosus and transposition of great vessels are common.  Males often have cryptorchidism while females have a bifid uterus and renal dysgenesis has been reported.

The face is dysmorphic with prominent globes (in spite of microphthalmia), the ears are large and malformed, the forehead is sloping, the nose is flattened and the jaw is small.  Some infants have a cleft lip and palate while the mouth is round and gaping.  The neck is usually short.

Severe brain malformations such as lissencephaly, cerebellar hypoplasia, and dysgenesis/agenesis of the corpus callosum are frequently present.

Genetics

This is an autosomal recessive disorder secondary to mutations in the PHGDH gene (1p12).

This condition has some clinical overlap with Neu-Laxova syndrome 2 (616038) but the latter is less severe and is caused by a different mutation.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available.

References
Article Title: 

Neu-laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway

Acuna-Hidalgo R, Schanze D, Kariminejad A, Nordgren A, Kariminejad MH, Conner P, Grigelioniene G, Nilsson D, Nordenskjold M, Wedell A, Freyer C, Wredenberg A, Wieczorek D, Gillessen-Kaesbach G, Kayserili H, Elcioglu N, Ghaderi-Sohi S, Goodarzi P, Setayesh H, van de Vorst M, Steehouwer M, Pfundt R, Krabichler B, Curry C, MacKenzie MG, Boycott KM, Gilissen C, Janecke AR, Hoischen A, Zenker M. Neu-laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway. Am J Hum Genet. 2014 Sep 4;95(3):285-93.

PubMed ID: 
25152457

Microphthalmia, Syndromic 6

Clinical Characteristics
Ocular Features: 

Ultrasound evaluation reveals globe size to vary widely from extremely small (6 mm) to normal axial length. Clinical anophthalmia is often diagnosed.  Both anophthalmia and microphthalmia may exist in the same individual. True anophthalmia has been confirmed in some patients in which no ocular tissue was detectable with ultrasound examination.  In such cases the optic nerves and chiasm are often missing as well.  Iris colobomas are common and these may extend posteriorly.  Myopia is sometimes present.

The ERG reveals generalized rod and cone dysfunction in some eyes, but may be normal in others. In many eyes the ERG is nonrecordable. Cataracts are frequently present.

Systemic Features: 

Digital and hand anomalies are common.  The hands are often described as broad and the thumbs may be low-placed.  The nails can appear dysplastic and postaxial polydactyly is often present.  Mild webbing of the fingers has been reported as well.  Microcephaly and the cranium can be misshapen. A high arched palate is often present and clefting has also been noted.  Micrognathia may be present. Some evidence of physical growth retardation is often evident.

Pituitary hypoplasia is not uncommon and may be associated with hypothyroidism and cryptorchidism with hypospadias, and a small or bifid scrotum.

The brain anomalies vary considerably.  Many patients have mild to moderate developmental delays with some learning difficulties. Sensorineural hearing loss is often present. Hypoplasia of the vermis, thinning of the corpus callosum, widening of the lateral ventricles, and occasional generalized cortical atrophy, at least in older individuals, have been described.

Genetics

This is an autosomal dominant condition caused by a point mutation in BMP4 (bone morphogenetic protein-4) (14q22-q23).  A number of chromosomal deletions involving this gene have also been identified in individuals who have this syndrome but since contiguous genes such as OTX2 and SIX6 may also be involved, the phenotype is more likely to be associated with other anomalies including genital hypoplasia, pituitary hypoplasia, absence of the optic nerves and/or chiasm, developmental delay, digital malformations, and cerebellar dysplasia.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Cataracts can be removed in selected individuals with potential visual function.  Socket prostheses should be considered in anophthalmia and extreme microphthalmia.  Low vision devices, Braille, and mobility training should be initiated early when appropriate.  Hearing evaluations should be done as soon as practical.

Learning specialists and special education facilities should be available for selected patients.  Polydactyly, syndactyly, skull, and cleft palate repairs may be indicated.

References
Article Title: 

Mutations in BMP4 cause eye, brain, and digit developmental anomalies: overlap between the BMP4 and hedgehog signaling pathways

Bakrania P, Efthymiou M, Klein JC, Salt A, Bunyan DJ, Wyatt A, Ponting CP, Martin A, Williams S, Lindley V, Gilmore J, Restori M, Robson AG, Neveu MM, Holder GE, Collin JR, Robinson DO, Farndon P, Johansen-Berg H, Gerrelli D, Ragge NK. Mutations in BMP4 cause eye, brain, and digit developmental anomalies: overlap between the BMP4 and hedgehog signaling pathways. Am J Hum Genet. 2008 Feb;82(2):304-19.

PubMed ID: 
18252212
Subscribe to RSS - brain malformations