autosomal recessive

Joint Laxity, Short Stature, and Myopia

Clinical Characteristics
Ocular Features: 

Three of four brothers in one family had high myopia and two had retinal detachments as well as iris and chorioretinal colobomas.  In a second family with five sibs a teenage female was reported to have glaucoma and vision of legal blindness.  She and one brother had high myopia as well (parameters not reported).

Systemic Features: 

In one consanguineous family a brother and sister had multiple large joint dislocations including elbows, hips, knees and ankles.  The sister exhibited severe kyphoscoliosis while her brother had only mild kyphosis.  A single individual in each of the two sibships had hearing loss.

Three brothers in another consanguineous family had joint laxity and mild pectus carinatum.

Short stature was noted in all 5 affected individuals.  Cognitive development was reported as normal.

Genetics

Five individuals from 2 consanguineous Saudi sibships have been reported.  Homozygous mutations in the GZF1 gene (20p11.21) segregated as expected for an autosomal recessive disorder.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.   Retinal detachment surgery and joint dislocation reduction should be considered in appropriate individuals.

References
Article Title: 

GZF1 Mutations Expand the Genetic Heterogeneity of Larsen Syndrome

Patel N, Shamseldin HE, Sakati N, Khan AO, Softa A, Al-Fadhli FM, Hashem M, Abdulwahab FM, Alshidi T, Alomar R, Alobeid E, Wakil SM, Colak D, Alkuraya FS. GZF1 Mutations Expand the Genetic Heterogeneity of Larsen Syndrome. Am J Hum Genet. 2017 May 4;100(5):831-836.

PubMed ID: 
28475863

Birk-Landau-Perez Syndrome

Clinical Characteristics
Ocular Features: 

Patients have oculomotor apraxia, saccadic pursuits, lack of fixation, and ptosis.  No pigmentary changes were seen in the fundi but the optic nerves have not been described.

Systemic Features: 

This is a progressive disorder in which psychomotor regression and loss of speech develop by 1 to 2 years of age, often appearing as the first sign of abnormalities.  Cognitive impairment can progress to profound intellectual disability.  Older patients have limb and truncal ataxia and experience frequent falls.  Muscle tone in the limbs is increased and children often exhibit dyskinesia, dystonia, and axial hypotonia.  General muscle weakness is often present.  No abnormalities have been seen on brain imaging.

Some patients develop a nephropathy with renal insufficiency, hypertension, and hyperechogenic kidneys though deterioration of the renal disease is slow.  Renal biopsy in one patient revealed tubulointerstitial nephritis but no individuals have reached end-stage renal failure.

Genetics

Homozygous mutations in the SLC30A9 gene (4p13) are responsible for this disorder.  A single multigenerational consanguineous Bedouin family of 6 affected individuals has been reported with a transmission pattern consistent with autosomal recessive inheritance.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment for the general disorder has been reported.  Electrolytes should be monitored and metabolic issues resulting from kidney malfunction may need to be addressed.

References
Article Title: 

Spastic Ataxia 8, Autosomal Recessive, with Hypomyelinating Leukodystrophy

Clinical Characteristics
Ocular Features: 

Reported ocular signs are limited to abnormal eye movements.  In other forms of spastic ataxia, nystagmus is evident in association with optic atrophy but no fundus examinations are reported in the 3 families with SPAX8.  Hypometric saccades and limited upgaze have also been found in these families.

Systemic Features: 

First signs and symptoms occur sometime in the first 5 years of life and often in the first year.   In 6 of 7 reported patients the presenting sign was nystagmus but one individual with reported onset of disease at age 5 years presented with ataxia.  Cerebellar signs, both truncal and limb, are usually present and the majority of individuals have evidence of dystonia.  Likewise, pyramidal signs are nearly always present.  Cerebellar dysarthria and titubation are often present with dystonic posturing and torticollis. 

Brain MRIs usually reveal cerebellar atrophy and widespread hypomyelination.  Two individuals in a single family had severe global psychomotor delays as well.  No sensory deficits were reported.  This disorder is progressive and patients in adulthood may require the use of a wheelchair.

Genetics

Homozygous mutations in the NKX6-2 (NKX6-2) gene (10q26.3) are responsible for this disorder.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported for the general condition.

References
Article Title: 

Mutations in NKX6-2 Cause Progressive Spastic Ataxia and Hypomyelination

Chelban V, Patel N, Vandrovcova J, Zanetti MN, Lynch DS, Ryten M, Botia JA, Bello O, Tribollet E, Efthymiou S, Davagnanam I; SYNAPSE Study Group, Bashiri FA, Wood NW, Rothman JE, Alkuraya FS, Houlden H. Mutations in NKX6-2 Cause Progressive Spastic Ataxia and Hypomyelination. Am J Hum Genet. 2017 Jun 1;100(6):969-977.

PubMed ID: 
28575651

3MC Syndromes

Clinical Characteristics
Ocular Features: 

The major ocular features involve the periocular structures.  These result in the typical facial dysmorphism and include hypertelorism, blepharoptosis, blepharophimosis, and highly arched eyebrows. Ptosis, unilateral or bilateral, can be present.

One patient was reported to have unilateral aniridia and a corneal leucoma.  Tear duct atresia was reported in another individual.

Systemic Features: 

Systemic features are highly variable in their presence and severity.   Facial clefting, growth deficiency, cognitive impairment, and hearing loss are present about half the time in some combination while craniosynostosis, urogenital anomalies, and radioulnar synostosis are seen in about a third of individuals.  More rare features include cardiac defects and abdominal midline defects (omphalocele and diastasis recti).

Genetics

This condition (3MC) is now postulated to include at least 3 disorders (Malpuech-Michels-Mingarelli-Carnevale syndromes) and considered here as a single autosomal recessive disease complex with overlapping clinical features that requires genotyping for diagnostic separation.  These are: 3MC1 syndrome (257920) resulting from homozygous mutations in the MASP1 gene (3q27.3), 3MC2 syndrome (265050) caused by mutations in the COLEC11 gene (2p25.3) and 3MC3 (248340) with mutations in the COLEC10 gene (8q24.12).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No effective general treatment has been reported.

References
Article Title: 

COLEC10 is mutated in 3MC patients and regulates early craniofacial development

Munye MM, Diaz-Font A, Ocaka L, Henriksen ML, Lees M, Brady A, Jenkins D, Morton J, Hansen SW, Bacchelli C, Beales PL, Hernandez-Hernandez V. COLEC10 is mutated in 3MC patients and regulates early craniofacial development. PLoS Genet. 2017 Mar 16;13(3):e1006679. doi: 10.1371/journal.pgen.1006679. eCollection 2017 Mar.

PubMed ID: 
28301481

Mutations in lectin complement pathway genes COLEC11 and MASP1 cause 3MC syndrome

Rooryck C, Diaz-Font A, Osborn DP, Chabchoub E, Hernandez-Hernandez V, Shamseldin H, Kenny J, Waters A, Jenkins D, Kaissi AA, Leal GF, Dallapiccola B, Carnevale F, Bitner-Glindzicz M, Lees M, Hennekam R, Stanier P, Burns AJ, Peeters H, Alkuraya FS, Beales PL. Mutations in lectin complement pathway genes COLEC11 and MASP1 cause 3MC syndrome. Nat Genet. 2011 Mar;43(3):197-203.

PubMed ID: 
21258343

Neurodevelopmental Disorder with Progressive Microcephaly, Spasticity, and Brain Anomalies

Clinical Characteristics
Ocular Features: 

 Examined patients have optic atrophy with nystagmus and roving eye movements.

Systemic Features: 

There are extensive and, in most cases, progressive CNS abnormalities resulting in severe neurodevelopmental deficits.  Infants at birth have progressive truncal hypotonia and limb spasticity.  Motor deficits result in little spontaneous movement, resulting in poor sucking, and respiratory difficulties.  Language does not develop and there is profound mental retardation. Progressive microcephaly is a characteristic finding.  There are often extrapyramidal signs such as rigidity and dystonic posturing.

Dysmorphic features include a short nose, high-arched palate, low-set and posteriorly rotated ears, micrognathia, postaxial polydactyly, hirsutism, pectus carinatum, contractures of large joints, and hyperextensibility of small joints.

Brain imaging shows a progressive leukoencephalopathy, cerebral and cerebellar atrophy, and delayed myelination.  The corpus callosum is often thin and the ventricles appear enlarged.  The lifespan is generally short with death occurring in infancy or early childhood.

Genetics

This autosomal recessive disorder results from homozygous mutations in the PLAA gene (9p21). 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

PLAA Mutations Cause a Lethal Infantile Epileptic Encephalopathy by Disrupting Ubiquitin-Mediated Endolysosomal Degradation of Synaptic Proteins

Hall EA, Nahorski MS, Murray LM, Shaheen R, Perkins E, Dissanayake KN, Kristaryanto Y, Jones RA, Vogt J, Rivagorda M, Handley MT, Mali GR, Quidwai T, Soares DC, Keighren MA, McKie L, Mort RL, Gammoh N, Garcia-Munoz A, Davey T, Vermeren M, Walsh D, Budd P, Aligianis IA, Faqeih E, Quigley AJ, Jackson IJ, Kulathu Y, Jackson M, Ribchester RR, von Kriegsheim A, Alkuraya FS, Woods CG, Maher ER, Mill P. PLAA Mutations Cause a Lethal Infantile Epileptic Encephalopathy by Disrupting Ubiquitin-Mediated Endolysosomal Degradation of Synaptic Proteins. Am J Hum Genet. 2017 May 4;100(5):706-724.

PubMed ID: 
28413018

Phospholipase A2-activating protein is associated with a novel form of leukoencephalopathy

Falik Zaccai TC, Savitzki D, Zivony-Elboum Y, Vilboux T, Fitts EC, Shoval Y, Kalfon L, Samra N, Keren Z, Gross B, Chasnyk N, Straussberg R, Mullikin JC, Teer JK, Geiger D, Kornitzer D, Bitterman-Deutsch O, Samson AO, Wakamiya M, Peterson JW, Kirtley ML, Pinchuk IV, Baze WB, Gahl WA, Kleta R, Anikster Y, Chopra AK. Phospholipase A2-activating protein is associated with a novel form of leukoencephalopathy. Brain. 2017 Feb;140(Pt 2):370-386.

PubMed ID: 
28007986

Retinal Dystrophy with or without Macular Staphyloma

Clinical Characteristics
Ocular Features: 

Few patients have had complete eye studies and physical findings are seemingly limited to the eye.  Patients complain of progressively decreasing vision as early as the first decade of life.  Abnormal retinal findings may be present by the second decade and maybe earlier.  The RPE can appear mottled and the retinal vessels are attenuated.  Retinal pigment clumping occurs later.  Night blindness and visual field constriction occur.  Cone and flicker ERGs may be nonrecordable while rod and flash ERGs are reduced consistent with a rod-cone dystrophy.  The retinal lamination has been described as abnormal on OCT in some individuals.

Macular staphylomas have been described in three unrelated offspring of consanguineous parents.

Vision loss is severe with legal blindness by midlife and one patient lost light perception by 40 years of age.  

Systemic Features: 

No consistent systemic abnormalities have been reported.

Genetics

Homozygous or compound heterozygous mutations in the C21orf2 gene (21q22.3) are the cause of this autosomal recessive syndrome.

Homozygous or heterozygous mutations in the same gene are responsible for axial spondylometaphyseal dysplasia (602271).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Retinitis Pigmentosa 47

Clinical Characteristics
Ocular Features: 

Onset of night blindness and field constriction symptoms occur during the 4th and 5th decades of life.  Pigmentary abnormalities of the retina are the hallmark of this condition.  Retinal thinning, bone spicule pigmentation, vascular attenuation, optic disc pallor, and pigmentary atrophy have all been noted.

In patients with the autosomal dominant form of this disease, rod function is severely impaired or absent as evidenced by ERG studies.  Cone responses are often reduced on an age-related basis and in the range of 85-95% below normal.  As expected, dark-adapted visual thresholds are elevated and visual fields are restricted peripherally.  Loss of vision is age-related but some individuals can retain acuities of 20/35 to 20/40 into their sixth decade.  It is more common for acuities to be in the range of 20/200 to 20/400 later in life.

Systemic Features: 

No systemic disease is associated with this disorder.

Genetics

Mutations in the SAG gene (2q37) are responsible for this form of RP.  Both autosomal recessive and autosomal dominant modes of inheritance have been reported.

In one family with homozygous mutations a sib had features of Oguchi disease which also results from homozygous mutations in SAG.

Among Hispanic families in the southwestern US, heterozygous mutations in SAG are a common cause of autosomal dominant retinitis pigmentosa.

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported for this disorder.

References
Article Title: 

A Novel Dominant Mutation in SAG, the Arrestin-1 Gene, Is a Common Cause of Retinitis Pigmentosa in Hispanic Families in the Southwestern United States

Sullivan LS, Bowne SJ, Koboldt DC, Cadena EL, Heckenlively JR, Branham KE, Wheaton DH, Jones KD, Ruiz RS, Pennesi ME, Yang P, Davis-Boozer D, Northrup H, Gurevich VV, Chen R, Xu M, Li Y, Birch DG, Daiger SP. A Novel Dominant Mutation in SAG, the Arrestin-1 Gene, Is a Common Cause of Retinitis Pigmentosa in Hispanic Families in the Southwestern United States. Invest Ophthalmol Vis Sci. 2017 May 1;58(5):2774-2784.

PubMed ID: 
28549094

PEHO-Like Syndrome

Clinical Characteristics
Ocular Features: 

Poor visual fixation and attention has been noted during the first 6 months of life.  Optic atrophy has been described and epicanthal folds may be present.

Systemic Features: 

General hypotonia with developmental delay and progressive microcephaly are evident in the first 6-12 months of life.  Seizures may be present at birth or within the first month of life.  Edema of the feet, hands, and face are also present at birth.  Cognitive deficits and motor delays are usually evident during infancy.  The central hypotonia may be accompanied by peripheral spasticity.  Kyphoscoliosis often develops.  Other dysmorphic features include micrognathia, narrow forehead, short nose, and open mouth.

Brain imaging reveals coarse pachygyria, polymicrogyria, and dilated ventricles with hypoplastic corpus callosum and pons.  Cerebellar hypoplasia was found in one child. 

Genetics

This presumed autosomal recessive disorder is associated with homozygous mutations in the CCDC88A gene (2p16.1).  Three affected children have been reported in a consanguineous family.

A somewhat similar disorder known as PEHO syndrome (260565) results from homozygous mutations in the ZNHIT3 gene. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

The PEHO syndrome

Riikonen R. The PEHO syndrome. Brain Dev. 2001 Nov;23(7):765-9. Review.

PubMed ID: 
11701291

Ataxia with Oculomotor Apraxia 3

Clinical Characteristics
Ocular Features: 

Ocular movement abnormalities are noted at the same time as other peripheral motor difficulties.  Slow saccadic eye movements, and head-eye lag are evident.  Pursuit movements are normal.

Systemic Features: 

Onset of gait instability occurs in the second decade of life with dysmetria and frequent falls. The eye movement abnormalities, dysarthria, and axial dysmetria with distal muscle atrophy and weakness are present at the same time.  Distal sensory deficits with lack of sensory nerve action potentials are also present in the lower limbs.  The upper limbs are involved somewhat later but with less pronounced movement impairment.  Hyporeflexia or areflexia is common.  The disorder is progressive with loss of independent mobility by the third decade.

Brain and spinal cord MRI imaging reveals cerebellar atrophy of the folia and vermis.  Persistently elevated alpha-fetoprotein levels have been found but no hypoalbuminemia.

Genetics

Homozygous missense mutations in the PIK3R5 gene (17p12-p13) have been associated with this clinical picture in one family of 4 affected sibs born of consanguineous parents.

See also Ataxia with Oculomotor Apraxia 1 (208920) with hypoalbuminemia, Ataxia with Oculomotor Apraxia 2 (606002) (also known as Spinocerebellar Ataxia, Autosomal Recessive 1 or SCAR1), and Ataxia with Oculomotor Apraxia 4 (616267).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Pontocerebellar Hypoplasia 7

Clinical Characteristics
Ocular Features: 

The ocular phenotype has not been fully evaluated.  Optic atrophy, nystagmus, and strabismus have been reported in addition to dysmorphic periocular features such as epicanthal folds, upslanting lid fissures, and a flattened nasal bridge.  Infants frequently do not fix and follow.

Systemic Features: 

Infants may be small at birth and subsequent psychomotor development is delayed.  The ears are large and the palate is highly arched.  Hypotonia is present from birth but spasticity with hyperreflexia may also be seen.  Brain imaging may show a thin corpus callosum as well as olivopontocerebellar hypoplasia.  The ventricles are frequently enlarged.  Patients are frequently irritable with few spontaneous movements.

Genitalia can be ambiguous and are frequently assigned to the female gender because of microphallus, fused scrotum, absent testes, and absence of the uterus.  Many such infants are found to have XY karyotypes.  Infants considered male at birth may subsequently show regression of penile corporeal tissue and may have genitalia that more closely resemble the female gender.  Pelvic imaging and laparoscopy, however, may reveal a uterus, Fallopian tubes and a blind-ending vagina with no gonadal tissue even in individuals with XY karyotypes. 

Genetics

Homozygous or compound heterozygous mutations in the TOE1 gene (1p34.1) are responsible for this condition.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment has been reported.

References
Article Title: 

Biallelic mutations in the 3' exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing

Lardelli RM, Schaffer AE, Eggens VR, Zaki MS, Grainger S, Sathe S, Van Nostrand EL, Schlachetzki Z, Rosti B, Akizu N, Scott E, Silhavy JL, Heckman LD, Rosti RO, Dikoglu E, Gregor A, Guemez-Gamboa A, Musaev D, Mande R, Widjaja A, Shaw TL, Markmiller S, Marin-Valencia I, Davies JH, de Meirleir L, Kayserili H, Altunoglu U, Freckmann ML, Warwick L, Chitayat D, Blaser S, Caglayan AO, Bilguvar K, Per H, Fagerberg C, Christesen HT, Kibaek M, Aldinger KA, Manchester D, Matsumoto N, Muramatsu K, Saitsu H, Shiina M, Ogata K, Foulds N, Dobyns WB, Chi NC, Traver D, Spaccini L, Bova SM, Gabriel SB, Gunel M, Valente EM, Nassogne MC, Bennett EJ, Yeo GW, Baas F, Lykke-Andersen J, Gleeson JG. Biallelic mutations in the 3' exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing. Nat Genet. 2017 Mar;49(3):457-464.

PubMed ID: 
28092684

Pages

Subscribe to RSS - autosomal recessive