clonus

Spastic Paraplegia 75

Clinical Characteristics
Ocular Features: 

Nystagmus with optic atrophy is usually present and one individual had glaucoma. 

Systemic Features: 

This is an early-onset and progressive neurodegenerative disorder.  Hypotonia may be present at birth.  A spastic gait and difficulty walking is noted in early childhood and most individuals never walk unassisted. Yong adults have spastic paresis with extensor plantar responses and clonus has been reported.  Distal muscle atrophy in the lower extremities has been noted.  Speech is dysarthric.  Brain imaging has been normal in some patients whereas others have mild atrophy of the cerebellum and the corpus callosum.  Cognitive impairment is variable with some individuals showing poor school performance while others are described as mentally retarded.

Genetics

Homozygous mutations in the MAG gene (19q13.12) are responsible for this disorder.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No effective treatment has been reported although physical therapy may be helpful. Special education, speech and physical therapy, and low vision devices might also be of benefit.

References
Article Title: 

Myelin-associated glycoprotein gene mutation causes Pelizaeus-Merzbacher disease-like disorder

Lossos A, Elazar N, Lerer I, Schueler-Furman O, Fellig Y, Glick B, Zimmerman BE, Azulay H, Dotan S, Goldberg S, Gomori JM, Ponger P, Newman JP, Marreed H, Steck AJ, Schaeren-Wiemers N, Mor N, Harel M, Geiger T, Eshed-Eisenbach Y, Meiner V, Peles E. Myelin-associated glycoprotein gene mutation causes Pelizaeus-Merzbacher disease-like disorder. Brain. 2015 Sep;138(Pt 9):2521-36.

PubMed ID: 
26179919

Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders

Novarino G, Fenstermaker AG, Zaki MS, Hofree M, Silhavy JL, Heiberg AD, Abdellateef M, Rosti B, Scott E, Mansour L, Masri A, Kayserili H, Al-Aama JY, Abdel-Salam GM, Karminejad A, Kara M, Kara B, Bozorgmehri B, Ben-Omran T, Mojahedi F, Mahmoud IG, Bouslam N, Bouhouche A, Benomar A, Hanein S, Raymond L,Forlani S, Mascaro M, Selim L, Shehata N, Al-Allawi N, Bindu PS, Azam M, Gunel M, Caglayan A, Bilguvar K, Tolun A, Issa MY, Schroth J, Spencer EG, Rosti RO, Akizu N, Vaux KK, Johansen A, Koh AA, Megahed H, Durr A, Brice A, Stevanin G, Gabriel SB, Ideker T, Gleeson JG. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science. 2014 Jan 31;343(6170):506-11.

PubMed ID: 
24482476

Spastic Ataxia 2

Clinical Characteristics
Ocular Features: 

Horizontal nystagmus is present in some patients.

Systemic Features: 

Cerebellar ataxia, dysarthria, and spasticity of the lower limbs appear in the first two decades of life.  The spasticity may involve all 4 limbs late in life.  Cognition is not impacted. Cervical dystonia has been noted. No consistent changes have been found on brain imaging.  The neurologic signs are slowly progressive although patients may remain ambulatory.

Tremor, clonus, and extrapyramidal chorea has been seen in several families with what has been called spastic paraplegia-58 which may be the same disorder as SPAX2 since mutations are found in the same gene (KIF1C).  Symptoms and prognosis are similar in these conditions except for the reported presence of developmental delay and mild mental retardation in some individuals diagnosed to have SPG58.

Genetics

This is an autosomal recessive condition as the result of homozygous mutations in the KIF1C gene (17p13.2).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No effective treatment for this disease is available although speech and physical therapy may be helpful.

References
Article Title: 

Motor protein mutations cause a new form of hereditary spastic paraplegia

Caballero Oteyza A, Battaloglu E, Ocek L, Lindig T, Reichbauer J, Rebelo AP, Gonzalez MA, Zorlu Y, Ozes B, Timmann D, Bender B, Woehlke G, Zuchner S, Schols L, Schule R. Motor protein mutations cause a new form of hereditary spastic paraplegia. Neurology. 2014 May 7. [Epub ahead of print].

PubMed ID: 
24808017

Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders

Novarino G, Fenstermaker AG, Zaki MS, Hofree M, Silhavy JL, Heiberg AD, Abdellateef M, Rosti B, Scott E, Mansour L, Masri A, Kayserili H, Al-Aama JY, Abdel-Salam GM, Karminejad A, Kara M, Kara B, Bozorgmehri B, Ben-Omran T, Mojahedi F, Mahmoud IG, Bouslam N, Bouhouche A, Benomar A, Hanein S, Raymond L,Forlani S, Mascaro M, Selim L, Shehata N, Al-Allawi N, Bindu PS, Azam M, Gunel M, Caglayan A, Bilguvar K, Tolun A, Issa MY, Schroth J, Spencer EG, Rosti RO, Akizu N, Vaux KK, Johansen A, Koh AA, Megahed H, Durr A, Brice A, Stevanin G, Gabriel SB, Ideker T, Gleeson JG. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science. 2014 Jan 31;343(6170):506-11.

PubMed ID: 
24482476
Subscribe to RSS - clonus