hepatosplenomegaly

Fucosidosis

Clinical Characteristics
Ocular Features: 

Retinal and conjunctival vessels may appear tortuous, dilated, and irregular in diameter, characteristics sometimes seen in Fabry disease.  Diffuse opacities may be seen in the superficial cornea but do not have the whorl-like pattern seen in Fabry disease.  The majority of ocular cells contain cytoplasmic, membrane-bound aggregates of fibrillogranular and multilaminated material.  The orbits may be shallow as a result of bony dysplasia of the cranial bones. 

Systemic Features: 

The coarse facial features have been described as "Hurler-like".  Two major types have been described: type 1 with onset in the first 6 months of life and rapid psychomotor and general neurologic deterioration, and the later onset, less severe type 2 in which angiokeratomas resembling Fabry disease occur.  Infants with type 1 may not survive beyond one year of age.  The Hurler-like face is less pronounced and the neurologic deterioration is less rapid in type 2 with survival often into the third decade or later.  The intracellular accumulation of glycolipids and glycoproteins leads to cell death accounting for the progression of CNS disease.   Abnormal bone growth (dysostosis multiplex) can lead to short stature.  Elevated sweat NaCl, hypohidrosis, and poor temperature control can be a feature of both types but this is more pronounced in type 1.  The DNA mutation is the same in both types and there may be overlap in some of the clinical features.  Furthermore, both types have been reported in the same family.

Low levels of alpha-L-fucosidase can be detected in plasma, urine, and leukocytes.  Glycolipids and glycoproteins have also been shown to accumulate in the cells of the skin, liver, spleen, pancreas and kidneys. 

Genetics

Fucosidosis is a rare, progressive, autosomal recessive, lysosomal storage disease in which fucose accumulates in tissue as a result of defective alpha-L-fucosidase.  The responsible mutations are found in the FUCA1 gene (1p34). 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available for the primary disease.  A multidisciplinary supportive program can be beneficial for some patients.  Respiratory therapy especially is important to reduce the threat of infections.

References
Article Title: 

Fucosidosis revisited: a review of 77 patients

Willems PJ, Gatti R, Darby JK, Romeo G, Durand P, Dumon JE, O'Brien JS. Fucosidosis revisited: a review of 77 patients. Am J Med Genet. 1991 Jan;38(1):111-31. Review.

PubMed ID: 
2012122

Neuraminidase Deficiency

Clinical Characteristics
Ocular Features: 

A cherry red spot is may be seen in late childhood or early adolescence.  It occurs in nearly 100% of patients with type I while only 75% of type II patients have this feature possibly because their early death from the more severe systemic disease prevents full ascertainment.  Visual acuity is reduced, sometimes severely.  Some but not all individuals have corneal and lens opacities.  A subtle corneal haze has also been seen.  Nystagmus has been reported. 

Systemic Features: 

This is a neurodegenerative disorder with progressive deterioration of muscle and central nervous system functions.  Myoclonus, mental deterioration, hepatosplenomegaly, muscle weakness and atrophy are common.  The defect in neuraminidase activity leads to abnormal amounts of sialyl-oligosaccharides in the urine.  Spinal deformities such as kyphosis are common.  Deep tendon reflexes are exaggerated.  Ataxia and hearing loss may be present.  Coarse facies, a barrel chest, and short stature are characteristic.  Hepatic cells contain numerous vacuoles and numerous inclusions.

Sialidosis types I and II are both caused by mutations in the neuroaminidase gene.  Type I is associated with milder disease than type II which has an earlier age of onset and may present in infancy or even begin in utero.  Early death within two years of age is common in the congenital or infantile forms.  There is, however, significant variability in age of onset and the course of disease among types. 

Genetics

The sialidoses are autosomal recessive lysosomal storage disorders resulting from mutations in the NEU1 gene (6p21.3) which lead to an intracellular accumulation of glycoproteins containing sialic acid residues.  Both types I and II are caused by mutations in the same gene. 

Treatment
Treatment Options: 

Treatment is focused on symptom management. 

References
Article Title: 

Sandhoff Disease

Clinical Characteristics
Ocular Features: 

Retinal ganglion cells are rendered dysfunctional from the toxic accumulation of intra-lysosomal GM2 ganglioside molecules causing early visual symptoms.  These cells in high density around the fovea centralis create a grayish-white appearance.  Since ganglion cells are absent in the foveolar region, this area retains the normal reddish appearance, producing the cherry-red spot.  Axonal decay and loss of the ganglion cells leads to optic atrophy and blindness. 

Systemic Features: 

Sandhoff disease may be clinically indistinguishable from Tay-Sachs disease even though the same enzyme is defective (albeit in separate subunits A and B that together comprise the functional enzymes).  The presence of hepatosplenomegaly in Sandoff disease may be distinguishing. The infantile form of this lysosomal storage disease seems to be the most severe.  Infants appear to be normal until about 3-6 months of age when neurological development slows and muscles become weak.  Seizures, loss of interest, and progressive paralysis begin after this together with loss of vision and hearing.  An exaggerated startle response is considered an early and helpful sign in the diagnosis.  Among infants with early onset disease, death usually occurs by 3 or 4 years of age.   

Ataxia with spinocerebellar degeneration, motor neuron disease, dementia, and progressive dystonia are more common in individuals with later onset of neurodegeneration.  The juvenile and adult-onset forms of the disease also progress more slowly.  

Genetics

Sandhoff disease results from mutations in the beta subunit of the hexosaminidase A and B enzymes.  It is an autosomal recessive disorder caused by mutations in HEXB (5q13). 

Tay-Sachs disease (272800) can be clinically indistinguishable from Sandoff disease and they are allelic disorders.  However, the mutation in Tay-Sachs (272800) is in HEXA resulting in dysfunction of the alpha subunit of hexosaminidase A enzyme. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No specific treatment is available beyond general support with proper nutrition and maintainence of airways.  Anticonvulsants may be helpful in some stages.  Gene therapy in fibroblast cultures has achieved some restoration of  hexosaminidase A activity in Tay-Sachs disease and may have potential in Sandhoff disease as well. 

References
Article Title: 

GM1 Gangliosidosis

Clinical Characteristics
Ocular Features: 

Based on clinical manifestations, three types have been described: type I or infantile form, type II or late-infantile/juvenile form, and type III or adult/chronic form but all are due to mutations in the same gene.  Only the infantile form has the typical cherry red spot in the macula but is present in only about 50% of infants.  The corneal clouding is due to intracellular accumulations of mucopolysaccharides in corneal epithelium and keratan sulfate in keratocytes.  Retinal ganglion cells also have accumulations of gangliosides.  Decreased acuity, nystagmus, strabismus and retinal hemorrhages have been described. 

Systemic Features: 

Infants with type I disease are usually hypotonic from birth but develop spasticity, psychomotor retardation, and hyperreflexia within 6 months.  Early death from cardiopulmonary disease or infection is common.  Hepatomegaly, coarse facial features, brachydactyly, and cardiomyopathy with valvular dysfunction are common.  Dermal melanocytosis has also been described in infants in a pattern some have called Mongolian spots.  Skeletal dysplasia is a feature and often leads to vertebral deformities and scoliosis.  The ears are often large and low-set, the nasal bridge is depressed, the tongue is enlarged and frontal bossing is often striking.  Hirsutism, coarse skin, short digits, and inguinal hernias are common.

The juvenile form, type II, has a later onset with psychomotor deterioration, seizures and skeletal changes apparent between 7 and 36 months and death in childhood.  Visceral involvement and cherry-red spots are usually not present. 

Type III, or adult form, is manifest later in the first decade or even sometime by the 4th decade.  Symptoms and signs are more localized.  Neurological signs are evident as dystonia or speech and gait difficulties.  Dementia, parkinsonian signs, and extrapyramidal disease are late features.  No hepatosplenomegaly, facial dysmorphism, or cherry red spots are present in most individuals. Lifespan may be normal in this type. 

Genetics

This is an autosomal recessive lysosomal storage disease secondary to a mutations in GLB1 (3p21.33).  It is allelic to Morquio B disease (MPS IVB) (253010).  The mutations in the beta-galactosidase-1 gene result in intracellular accumulation of GM1 ganglioside, keratan sulfate, and oligosaccharides.  The production of the enzyme varies among different mutations likely accounting for the clinical heterogeneity. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

There is no treatment that effectively alters the disease course. 

References
Article Title: 

Hurler and Scheie Syndromes (MPS IH, IS, IH/S)

Clinical Characteristics
Ocular Features: 

Progressive corneal clouding is a major feature and appears early in life.  Intracellular accumulations of heparan and dermatan sulfate are responsible for the ground glass appearance.  However, congenital glaucoma also occurs in MPS I and must be considered as a concomitant cause of a diffusely cloudy cornea.

Abnormal storage of mucopolysaccharides has been found in all ocular tissues and in the retina leads to a pigmentary retinopathy.  The ERG may be abolished by 5 or 6 years of age.  Papilledema is often followed by optic atrophy.  Photophobia is a common symptom.  Shallow orbits give the eyes a prominent appearance.

Systemic Features: 

This group of lysosomal deficiency diseases is probably the most common.  MPS I is clinically heterogeneous encompassing three clinical entities: Hurler, Hurler-Scheie, and Scheie.  In terms of clinical severity, Hurler is the most severe and Scheie is the mildest.  Infants generally appear normal at birth and develop the typical coarse facial features in the first few months of life.  Physical growth often stops at about 2 years of age.  Skeletal changes of dysostosis multiplex are often seen and kyphoscoliosis is common as vertebrae become flattened.  The head is large with frontal bossing and a depressed nasal bridge.  Cranial sutures, especially the metopic and sagittal sutures, often close prematurely.  The lips are prominent and an open mouth with an enlarged tongue is characteristic.  The neck is often short.  Odontoid hypoplasia increases the risk of vertebral subluxation and cord compression.  Joints are often stiff and arthropathy eventually affects all joints.  Claw deformities of the hands and carpal tunnel syndrome are common.  Most patients are short in stature and barrel-chested.

Cardiac valves often are thickened and endocardial fibroelastosis is frequently seen.  The coronary arteries are often narrowed.  Respiratory obstructions are common and respiratory infections can be serious problems.  Hearing loss is common.

Most patients reach a maximum functional age of 2 to 4 years and then regress.  Language is limited.  Untreated, many patients die before 10 years of age.

Genetics

The Hurler/Scheie phenotypes are all the result of mutations in the IDUA gene (4p16.3).  They are inherited in an autosomal recessive pattern.  A deficiency in alpha-L-iduronidase causes three phenotypes: Hurler (607014; MPS IH), Hurler-Scheie (607015; MPS IH/S), and Scheie (607016; MPS IS) syndromes.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Various treatments have had some success.  Enzyme replacement using laronidase (Aldurazyme©) has been shown to reduce organomegaly and improve motor and respiratory functions.  It has been used alone and in combination with bone marrow transplantation but therapeutic effects are greater if given to younger patients.  It does not improve skeletal defects or corneal clouding.  MRI imaging has documented improvement in CNS signs.  Gene therapy has shown promise but remains experimental.  Regular lifelong monitoring is important using a multidisciplinary approach to identify potential problems.  Joint problems may be surgically correctable with special emphasis on the need for atlanto-occipital stabilization.  Corneal transplants may be helpful in the restoration of vision in selected patients.

References
Article Title: 

Maroteaux-Lamy Syndrome (MPS VI)

Clinical Characteristics
Ocular Features: 

Corneal clouding is the cardinal ocular feature and is often visible by 5 years of age.  Several adult patients have had glaucoma with both open and closed angles.  The mechanism is unknown.  Optic nerve compression or secondary edema can cause a relatively sudden loss of vision.

Systemic Features: 

The lysosomal accumulation of glycosaminoglycans is responsible for the widespread signs and symptoms found in this disease.  Bone destruction in shoulders, hips and skull is often seen by the second decade of life and may become evident later in the knees and spine.  Early growth may be normal but eventually slows resulting in short stature.  Dysplasia of bones comprising these joints leads to stiffness and restricted movement.  The face is dysmorphic with coarse features.  Bone dysplasia and facial dysmorphism may be seen at birth.  Myelopathy and even tetraplegia can result from vertebral compression.  Intelligence is often normal although more severely affected individuals may have some cognitive defects.  Hepatosplenomegaly is common and compromised respiratory function can result in reduced physical stamina.  The tongue is usually enlarged.  Accumulation of dermatan sulfate in heart valves may produce insufficiency or restriction of outflow.

Genetics

MPS VI is a lysosomal storage disease inherited in an autosomal recessive pattern.  The responsible mutations lie in ARSB (5q11-q13), the gene that encodes the enzyme arylsulfatase B.  The phenotype results from defective dermatan sulfate breakdown with lysosomal accumulation.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Enzyme replacement therapy with galsulfase (Naglazyme®) is beneficial in alleviating some of the manifestations of this disease.  Orthopedic surgery for specific deformities may be necessary.  Visually significant corneal opacification may require corneal transplantation.

References
Article Title: 

Threshold effect of urinary glycosaminoglycans and the walk test as indicators of disease progression in a survey of subjects with Mucopolysaccharidosis VI (Maroteaux-Lamy syndrome)

Swiedler SJ, Beck M, Bajbouj M, Giugliani R, Schwartz I, Harmatz P, Wraith JE, Roberts J, Ketteridge D, Hopwood JJ, Guffon N, S?deg Miranda MC, Teles EL, Berger KI, Piscia-Nichols C. Threshold effect of urinary glycosaminoglycans and the walk test as indicators of disease progression in a survey of subjects with Mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). Am J Med Genet A. 2005 Apr 15;134A(2):144-50.

PubMed ID: 
15690405

Niemann-Pick Disease, Types C1 (D)

Clinical Characteristics
Ocular Features: 

The predominant ocular sign in types C1 is difficulty in upgaze described as a supranuclear palsy.  Abnormal saccadic movements have been reported as well.  Retinal signs such as a cherry red spot are not common.

Systemic Features: 

Hepatosplenomegaly and cognitive decline are similar in nature to those found in Niemann-Pick disease types A and B.  Types C1 and C2 are clinically similar but discussed separately as they are caused by mutations in separate genes.  Type D is caused by the same mutation causing C1.  Onset of disease manifested by ataxia, seizures and spasticity is usually between 2 and 4 years.  Dystonia, intention tremor, dysarthria, and hepatosplenomegaly are other features but visceral involvement may be absent.  Ascites and jaundice are sometimes present.  Dementia and extrapyramidal signs are often seen later.  However, there is considerable variation in onset and progression of disease but the symptoms are generally milder than that in types A and B.

Genetics

Type C1 (and D) are caused by mutations in the NPC1 gene (18q11-q12), and type C2 (607625) by mutations in the NPC2 gene (14q24.3).  Mutations in C1 are far more common (95%) than C2 mutations.  The gene mutations reduce the efficiency of sphingosine efflux from lysosomes and late endosomes as a result of a defect in esterification of cholesterol.

Types A (257200) and B (607616) Niemann-Pick disease generally cause more severe clinical signs and are the result of a sphingomyelinase deficiency.  All types of Niemann-Pick disease follow autosomal recessive patterns of inheritance.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

It has recently been reported that intrathecal 2-hydroxypropyl-beta-cyclodextrin slows progression of clinical symptoms and prolonged lifespan.

References
Article Title: 

Intrathecal 2-hydroxypropyl-β-cyclodextrin decreases neurological disease progression in Niemann-Pick disease, type C1: a non-randomised, open-label, phase 1-2 trial

Ory DS, Ottinger EA, Farhat NY, King KA, Jiang X, Weissfeld L, Berry-Kravis E, Davidson CD, Bianconi S, Keener LA, Rao R, Soldatos A, Sidhu R, Walters KA, Xu X, Thurm A, Solomon B, Pavan WJ, Machielse BN, Kao M, Silber SA, McKew JC, Brewer CC, Vite CH, Walkley SU, Austin CP, Porter FD. Intrathecal 2-hydroxypropyl-v-cyclodextrin decreases neurological disease progression in Niemann-Pick disease, type C1: a non-randomised, open-label, phase 1-2 trial. Lancet. 2017 Aug 10. pii: S0140-6736(17)31465-4. doi: 10.1016/S0140-6736(17)31465-4. [Epub ahead of print].

PubMed ID: 
28803710

Niemann-Pick disease type C

Vanier MT, Millat G. Niemann-Pick disease type C. Clin Genet. 2003 Oct;64(4):269-81. Review.

PubMed ID: 
12974729

Niemann-Pick Disease, Types A and B

Clinical Characteristics
Ocular Features: 

Affected infants usually develop prominent cherry red spots during the first 12 months of life and the entire retina has an ‘opaque’ appearance.  Intracellular lipid accumulation has been seen in retinal neurons, amacrine cells, retinal pigment epithelial cells, and receptors.  The cornea has stromal haziness.  The lens has a brownish coloration on the anterior surface with white spots on the posterior capsule.  Lens opacification seems to progress.

Vision in the first year of life is likely normal as infants have normal fixation, pupillary reactions, and following movements with no nystagmus.  However, by about 2 years of age visual responsiveness may be lost.

Systemic Features: 

Both the age of onset of neurological symptoms and the rate of progression are highly variable. Type A, known as the infantile form, is the more severe disease with onset by 6 months of age with rapid progression and few patients survive beyond three years of age.  Neonates seem to develop normally for the first 6 months but then become irritable, fail to thrive and feed poorly.  Hepatosplenomegaly is usually the first physical sign.  Hypotonia and pulmonary infections are common.  These patients never achieve normal developmental milestones such as sitting, walking or crawling and the neurodegeneration is relentless from this point with the median age at death 21 months, usually from respiratory disease.

The less severe form of Niemann-Pick disease, type B, has a later onset and slower course.  Such patients have widespread visceral disease affecting liver, spleen and lungs with hyperlipidemia but few neurologic symptoms and often survive into adulthood.  Mutations in the same gene are involved, however.  

Other rare cases have intermediate disease and some have proposed these be classified as types E and F but the phenotypes have not been well characterized.  The benefits of such a classification system are questionable as all result from mutations in the same gene simply illustrating the range in the clinical spectrum.

Sphingomyelin and other lipids accumulate in cells of various types including neurons and reticuloendothelial cells accounting for the hepatosplenomegaly and neurodegeneration.  Sphingomyelinase deficiency can be demonstrated in leukocytes and cultured fibroblasts.

Genetics

This is an autosomal recessive neurodegenerative disorder resulting from homozygous mutations in SMPD1 (11p15.4-p15.1) encoding sphingomyelin phosphodiesterase-1.  This recessive gene has an unusual biology.  Only the maternally inherited allele is active in the homozygous condition.  Such parent-specific gene activation is called gene imprinting.

Types A and B are allelic disorders.  

Niemann-Pick diseases designated types C1 and D (257220) are caused by mutations in the NPC1 gene (18q11-q12) and type C2 (607625)  from mutations in the NPC2 gene (14q24.3).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Enzyme replacement therapy trials are underway.  Amniotic membrane, bone marrow, and stem cell transplantation have been tried with some improvement in visceral disease but the results are mixed and await further studies.

References
Article Title: 

Hunter Syndrome (MPS II)

Clinical Characteristics
Ocular Features: 

Corneal clouding may be noted as early as 6 months of age but is usually absent. When present it is milder than in some other forms of mucopolysaccharidosis.  A pigmentary retinopathy with variable severity is often present.  The disc may be elevated and appears swollen.  Secondary optic atrophy may be seen in long standing cases.

Systemic Features: 

Mild to severe developmental delays are common and mental retardation has been reported in some cases.  There is often 'pebbling' of the skin over the neck and chest.  Joint stiffness, short stature, and skeletal deformities are common.   Many have short necks, a protuberant abdomen, a broad chest, and facial coarseness.  Hepatosplenomegaly, hearing loss, hernias, and carpal tunnel syndrome are often present.  The skull is large with a J-shaped sella, the vertebral bodies are hypoplastic anteriorly, the pelvis and femoral heads are hypoplastic and the diaphyses are expanded.

A severe form, type A, has its onset in the first two to four years of life, with more rapid progression and death commonly by adolescence.  Many patients have obstructive pulmonary disease and heart failure.  The IDS deficiency is similar to that of type B which is less severe and compatible with life into the 7th decade.  Intelligence is often normal in type B.

Genetics

Hunter syndrome, or MPS II, is one of seven lysosomal enzyme deficiencies responsible for the degradation of mucopolysaccharides, and the only one known to be X-linked (Xq28).  The mutation in IDS leads to a deficiency of iduronate sulfatase resulting in accumulation of dermatan and heparin sulfate.  Rare affected females may have chromosomal deletions instead of a simple mutation in IDS.

Pedigree: 
X-linked recessive, carrier mother
X-linked recessive, father affected
Treatment
Treatment Options: 

Various therapies are under development including enzyme replacement, gene transfers, and bone marrow transplantation.  Human iduronate-2-sulfatase (Idursulfase) has been used with encouraging signs but it is too early to determine the long term effectiveness.

References
Article Title: 

Gaucher Disease

Clinical Characteristics
Ocular Features: 

Gaucher disease is often divided into three clinical types, I, II, and III although all are caused by mutations in the same gene.  Type I, sometimes called nonneuronopathic type I, has ocular features including white deposits in anterior chamber structures such as the corneal endothelium, pupillary margin, and the angle, as well as in the ciliary body.  Pingueculae can be prominent.  The perimacular retina often appears grayish and also can show some white spots.  These may also be seen in the posterior vitreous in at least some patients with type III  There may be pigmentary changes in the macula and uveitis occurs rarely.  Macular atrophy has been reported and the retinal vasculature may be abnormally permeable. Corneal opacities have been seen in some patients.  Oculomotor apraxia and abnormal opticokinetic responses are common in types II and III.  Visual acuity may be in the range of 20/200.

Other conditions with ataxia and oculomotor apraxia are: ataxia with oculomotor apraxia 1 (208920), ataxia with oculomotor apraxia 2 (602600), ataxia-telangiectasia (208900) and Cogan-type oculomotor apraxia (257550) which lacks other neurologic signs.

Systemic Features: 

This is a severe systemic disease with perinatal lethality in some patients.  The range of clinical heterogeneity is wide, however, and minimally affected adult patients have also been described.  Individuals with nonneuropathic type I lack central nervous system involvement.  They often do have hepatosplenomegaly and pancytopenia with bone marrow involvement which are common to all types.  The latter may be responsible for frequent bone fractures and other orthopedic complications such as vertebral compression.  Thrombocytopenia with bleeding complications contributes to the primary anemia which is also present.  Interstitial lung disease can be seen in type I disease but occurs in less than 5% of patients. This is the most common of the three types. 

Patients with type I Gaucher disease have an increased risk of cancer, especially those of the hematological system.  For example, the risk for multiple myeloma has been estimated to be 37 times higher than in the general population.  There is also evidence of an increased incidence of multiple consecutive cancers in this condition.  Enzyme replacement therapy may reduce the risk of malignancies.

Patient with types II (acute neuronopathic [230900]) and III (subacute neuronopathic [231000]) are more likely to have neurologic disease with bulbar and pyramidal signs and sometimes seizures.  In type II, onset is in infancy and lifespan is about 2 years.   They have hepatosplenomegaly with growth arrest and developmental delays after a few months.  The clinical signs in type III or subacute neuronopathic type the onset is later (2.5 years to adulthood) than in type II and progression of neurologic disease is slower.  Early childhood development may appear normal for several years until abnormal extraocular movements or seizures are observed.  Type III is sometimes called Norrbottnian type.

Genetics

All three types of Gaucher disease are caused by mutations in the GBA (glucocerebrosidase) gene (1q21) and are inherited in an autosomal recessive pattern.

Evidence indicates that SCARB2, which codes for lysosomal integral membrane protein type 2 (LIMP-2), is a modifier of the phenotype in Gaucher disease.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Supportive care is required for all patients.  Splenectomy may be required for thrombocytopenia and blood transfusion can be helpful in severe anemia and excessive bleeding.  The course of disease is highly variable in all types, ranging from neonatal mortality to mild disease into adulthood, especially for individuals with type III.  Testing for deficiency in glucosylceramidase enzyme activity in leukocytes can be diagnostic.   Enzyme replacement or substrate reduction therapies can reduce the severity of clinical disease especially in type I disease but less so in types II and III.

References
Article Title: 

The clinical management of type 2 Gaucher disease

Weiss K, Gonzalez AN, Lopez G, Pedoeim L, Groden C, Sidransky E. The clinical management of type 2 Gaucher disease. Mol Genet Metab. 2014 Nov 14.  [Epub ahead of print] Review.

PubMed ID: 
25435509

A Mutation in SCARB2 is a Modifier in Gaucher Disease

Velayati A, Depaolo J, Gupta N, Choi JH, Moaven N, Westbroek W, Goker-Alpan O, Goldin E, Stubblefield BK, Kolodny E, Tayebi N, Sidransky E. A Mutation in SCARB2 is a Modifier in Gaucher Disease. Hum Mutat. 2011 Jul 27. doi: 10.1002/humu.21566. [Epub ahead of print]

PubMed ID: 
21796727
Subscribe to RSS - hepatosplenomegaly