nyctalopia

Night Blindness, Congenital Stationary, CSNB2A

Clinical Characteristics
Ocular Features: 

Night blindness is a feature of many pigmentary and other retinal disorders, most of which are progressive.  However, there is also a group of genetically heterogeneous disorders, with generally stable scotopic defects and without RPE changes, known as congenital stationary night blindness (CSNB).  At least 10 mutant genes are responsible with phenotypes so similar that genotyping is usually necessary to distinguish them.  All are caused by defects in visual signal transduction within rod photoreceptors or in defective photoreceptor-to-bipolar cell signaling with common ERG findings of reduced or absent b-waves and generally normal a-waves.  However, the photopic ERG can be abnormal to some degree as well and visual acuity may be subnormal.  In the pregenomic era, subtleties of ERG responses were frequently used in an attempt to distinguish different forms of CSNB.  Genotyping now enables classification with unprecedented precision.

Congenital stationary night blindness disorders are primarily rod dystrophies presenting early with symptoms of nightblindness and relative sparing of central vision.  Nystagmus and photophobia are usually not features.  Dyschromatopsia and loss of central acuity can develop later as the cones eventually become dysfunctional as well but these symptoms are much less severe than those seen in cone-rod dystrophies.  The amount of pigmentary retinopathy is highly variable. 

CSNB2A, or type 2A, is associated with myopia which ranges from mild to severe.  Residual rod function is diminished but not completely absent as suggested by the presence of small b-waves.  Cone function is impacted to some degree as well.  Nystagmus and strabismus are inconsistent findings.  Retinal pigmentation is usually normal in the X-linked forms. Visual acuity ranges from 20/30 to 20/200.  Night blindness is less severe in this form than in another X-linked CSNB (CSNB1A; 310500).  Mild dyschromatopsia is present in some patients but this is primarily a disease of rods.

Systemic Features: 

No systemic disease is associated with congenital stationary night blindness.

Genetics

Congenital stationary night blindness type 2A is an X-linked disorder caused by a mutation in the CACNA1F gene located at Xp11.23.  Only males are affected and carrier females do not have clinical disease.

This disorder is allelic to Aland Island Eye Disease (300600) from which it differs by an apparent lack of progressive myopia and the presence of a normal fovea.  Aland Island Eye Disease has foveal hypoplasia as well as iris and fundus hypopigmentation.

Another allelic disorder with mutations in CACNA1F is CORDX3 (300476), a cone-rod dystrophy.

Approximately 55% of X-linked CSNB are of this type while about 45% have another X-linked form known as CSNB1A, or type 1A (310500) secondary to a mutation at Xp11.4. 

Pedigree: 
X-linked recessive, carrier mother
X-linked recessive, father affected
Treatment
Treatment Options: 

No treatment beyond correction of the refractive error is available but tinted lenses are sometimes used to enhance vision.

References
Article Title: 

Night Blindness, Congenital Stationary, CSNB1C

Clinical Characteristics
Ocular Features: 

Night blindness is a feature of many pigmentary and other retinal disorders, most of which are progressive.  However, there is also a group of genetically heterogeneous disorders, with generally stable scotopic defects and without RPE changes, known as congenital stationary night blindness (CSNB).  At least 10 mutant genes are responsible with phenotypes so similar that genotyping is usually necessary to distinguish them.  All are caused by defects in visual signal transduction within rod photoreceptors or in defective photoreceptor-to-bipolar cell signaling with common ERG findings of reduced or absent b-waves and generally normal a-waves.  The photopic ERG is usually abnormal to some degree as well and visual acuity may be subnormal.  In the pregenomic era, subtleties of ERG responses were frequently used in an attempt to distinguish different forms of CSNB.  Genotyping now enables classification with unprecedented precision.

Congenital stationary night blindness disorders are primarily rod dystrophies presenting early with symptoms of nightblindness and relative sparing of central vision.  Nystagmus and photophobia are usually not features.  Dyschromatopsia and loss of central acuity can develop later as the cones eventually become dysfunctional as well but these symptoms are much less severe than those seen in cone-rod dystrophies.  The amount of pigmentary retinopathy is highly variable. 

In this disorder (CSNB1C) the b-wave responses are severely deficient (no scotopic response) and a-waves seem to be normal.  Some reduction in central acuity is common.  High myopia may be present together with nystagmus and strabismus.  In one family, hypoplastic discs and relative thinning of the inner nuclear layer were described in twin brothers.  ERG responses suggest loss of ON bipolar cell function similar to that found in patients with GRM6 mutations (CSNB1B; 257270).

Systemic Features: 

No systemic disease is associated with congenital stationary night blindness.

Genetics

CSNB1C, or type 1C, is one of four congenital nightblindness disorders with autosomal recessive inheritance.  It results from mutations in the TRPM1 (15q13-q14) gene which encodes for a calcium ion channel protein, part of the GRM6 signaling cascade.  

Other autosomal recessive CSNB disorders are: CSNB2B (610427), CSNB (unclassified; OMIM number pending), and CSNB1B (257270).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment beyond correction of the refractive error is available but tinted lenses are sometimes used to enhance vision.  Refractive errors need to be corrected and low vision aids can be helpful for those with some loss of central acuity.

References
Article Title: 

Night Blindness, Congenital Stationary, CSNB1B

Clinical Characteristics
Ocular Features: 

Night blindness is a feature of many pigmentary and other retinal disorders, most of which are progressive.  However, there is also a group of genetically heterogeneous disorders, with generally stable scotopic defects, known as congenital stationary night blindness (CSNB).  At least 10 mutant genes are responsible with phenotypes so similar that genotyping is usually necessary to distinguish them.  All are caused by defects in visual signal transduction within rod photoreceptors or in defective photoreceptor-to-bipolar cell signaling with common ERG findings of reduced or absent b-waves and generally normal a-waves.  However, the photopic ERG can be abnormal to some degree as well and visual acuity may be subnormal.  In the pregenomic era, subtleties of ERG responses were frequently used in an attempt to distinguish different forms of CSNB.  Genotyping now enables classification with unprecedented precision.

Congenital stationary night blindness disorders are primarily rod dystrophies presenting early with symptoms of nightblindness and relative sparing of central vision.  Nystagmus and photophobia are usually not features.  Dyschromatopsia and loss of central acuity can develop later as the cones eventually become dysfunctional as well but these symptoms are much less severe than those seen in cone-rod dystrophies.  The amount of pigmentary retinopathy is highly variable.

In this disorder (CSNB1B) the b-wave responses are severely deficient and a-waves seem to be normal.  Color vision is normal and refractive errors are unremarkable.  Visual acuity ranges from normal to a mild reduction (20/15-20/40).  One patient with 20/40 vision has been reported to have bone spicule pigment clumps in the midperiphery. Several patients with subnormal vision have been reported to have nystagmus.

Patients have a distinctive ERG pattern response to scotopic 15-Hz flicker stimuli that suggest that more than two rod neural pathways exist.

Systemic Features: 

No systemic disease is associated with congenital stationary night blindness.

Genetics

CSNB1B, or type 1B, is one of four CSNB disorders with autosomal recessive inheritance.  It is the result of mutations in the GRM6 gene (5q35) which lead to functional loss of the glutamate receptor.  

Other autosomal recessive CSNB disorders are: CSNB2B (610427), CSNB (unclassified; OMIM number pending), and CSNB1C (613216).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment beyond correction of the refractive error is available but tinted lenses are sometimes used to enhance vision.

References
Article Title: 

Mutations in GRM6 cause autosomal recessive congenital stationary night blindness with a distinctive scotopic 15-Hz flicker electroretinogram

Zeitz C, van Genderen M, Neidhardt J, Luhmann UF, Hoeben F, Forster U, Wycisk K, M?degty?degs G, Hoyng CB, Riemslag F, Meire F, Cremers FP, Berger W. Mutations in GRM6 cause autosomal recessive congenital stationary night blindness with a distinctive scotopic 15-Hz flicker electroretinogram. Invest Ophthalmol Vis Sci. 2005 Nov;46(11):4328-35.

PubMed ID: 
16249515

Night Blindness, Congenital Stationary, CSNB1A

Clinical Characteristics
Ocular Features: 

Night blindness is a feature of many pigmentary and other retinal disorders, most of which are progressive.  However, there is also a group of genetically heterogeneous disorders, with generally stable scotopic defects and without RPE changes, known as congenital stationary night blindness (CSNB).  At least 10 mutant genes are responsible with phenotypes so similar that genotyping is usually necessary to distinguish them.  All are caused by defects in visual signal transduction within rod photoreceptors or in defective photoreceptor-to-bipolar cell signaling with common ERG findings of reduced or absent b-waves and generally normal a-waves.  The photopic ERG is usually abnormal to some degree as well and visual acuity may be subnormal.  In the pregenomic era, subtleties of ERG responses were frequently used in an attempt to distinguish different forms of CSNB.  Genotyping now enables classification with unprecedented precision.

Congenital stationary night blindness disorders are primarily rod dystrophies presenting early with symptoms of nightblindness and relative sparing of central vision.  Nystagmus and photophobia are usually not features.  Dyschromatopsia and loss of central acuity can develop later as the cones eventually become dysfunctional as well but these symptoms are much less severe than those seen in cone-rod dystrophies.  The amount of pigmentary retinopathy is highly variable. 

CSNB1A, or type 1A, is associated with myopia which ranges from mild to severe.  Rod function is completely absent.  Nystagmus and strabismus are inconsistent findings.   Visual acuity ranges from 20/30 to 20/200.  Retinal pigmentation is usually normal in the X-linked forms.  Night blindness is more severe in this form than in another X-linked CSNB, type 2A (300071). 

Systemic Features: 

No systemic disease is associated with congenital stationary night blindness.

Genetics

Congenital stationary night blindness type 1A is an X-linked disorder caused by a mutation in the NYX gene located at Xp11.4.  Only males are affected and carrier females do not have clinical disease (although homozygous females with typical findings have been described).

Approximately 45% of X-linked CSNB are of this type while about 55% have another X-linked form known as CSNB2A, or type 2A (300071) resulting from a mutation at Xp11.23.  A single patient with high myopia absent night blindness with a mutation in the NYX gene has been reported.

Pedigree: 
X-linked recessive, carrier mother
X-linked recessive, father affected
Treatment
Treatment Options: 

No treatment beyond correction of the refractive error is available but tinted lenses are sometimes used to enhance vision.

References
Article Title: 

Pages

Subscribe to RSS - nyctalopia