limb spasticity

Birk-Landau-Perez Syndrome

Clinical Characteristics
Ocular Features: 

Patients have oculomotor apraxia, saccadic pursuits, lack of fixation, and ptosis.  No pigmentary changes were seen in the fundi but the optic nerves have not been described.

Systemic Features: 

This is a progressive disorder in which psychomotor regression and loss of speech develop by 1 to 2 years of age, often appearing as the first sign of abnormalities.  Cognitive impairment can progress to profound intellectual disability.  Older patients have limb and truncal ataxia and experience frequent falls.  Muscle tone in the limbs is increased and children often exhibit dyskinesia, dystonia, and axial hypotonia.  General muscle weakness is often present.  No abnormalities have been seen on brain imaging.

Some patients develop a nephropathy with renal insufficiency, hypertension, and hyperechogenic kidneys though deterioration of the renal disease is slow.  Renal biopsy in one patient revealed tubulointerstitial nephritis but no individuals have reached end-stage renal failure.

Genetics

Homozygous mutations in the SLC30A9 gene (4p13) are responsible for this disorder.  A single multigenerational consanguineous Bedouin family of 6 affected individuals has been reported with a transmission pattern consistent with autosomal recessive inheritance.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment for the general disorder has been reported.  Electrolytes should be monitored and metabolic issues resulting from kidney malfunction may need to be addressed.

References
Article Title: 

Spastic Paraplegia 2

Clinical Characteristics
Ocular Features: 

Nystagmus is common but variable in age of onset, and half of affected individuals have optic atrophy.

Systemic Features: 

This is a complex form of spastic paraplegia in which primarily lower limb spasticity is associated with dysarthria, sensory disturbances, cognitive deficits, muscle wasting and mild ataxia.  There is, however, considerable variability in age of onset and rate of symptom progression.  The first motor symptoms are often evident when children start walking, which is often delayed and clumsy.  However, evidence of spasticity may be present in children under 1 year of age.   Some patients have normal mental functions while others are considered mentally retarded.  The MRI reveals patchy leukodystrophy and degeneration of both corticospinal and spinocerebellar tracks was found in an autopsied individual.  Progression is relentless with many individuals requiring assistive devices such as crutches or walkers by early adult life.

Genetics

This is an X-linked disorder secondary to a mutation in the PLP1 gene at Xq22.2which codes for 2 major proteins found in myelin.  SPG2 is allelic to the more severe Pelizaeus-Merzbacher disease (312080).

Treatment
Treatment Options: 

Mobility devices and physical therapy can be helpful, especially in younger individuals.

References
Article Title: 

Spastic Paraplegia 7

Clinical Characteristics
Ocular Features: 

Many but not all individuals have significant visual loss due to optic atrophy.  Other ocular signs include supranuclear palsy, ptosis, and nystagmus.  Older individuals with advanced disease may have progressive external ophthalmoplegia.

Systemic Features: 

There is a great deal of clinical heterogeneity between families and not all individuals have severe neurological disease.  Progressive neurological signs (primarily abnormal gait) are often present in late childhood or early adolescence but may occur late in life.  Clinical features include muscle atrophy and weakness with spasticity (more pronounced in the lower limbs), ataxia, pyramidal signs, dysphagia, and cerebellar dysarthria.  Hyperreflexia and extensor plantar responses are often present.  Cognitive deficits are manifest as deficits in attention and higher levels of reasoning.  Some patients have a mild peripheral neuropathy with decreased vibratory sense.  Many patients have significant dysfunction of the bladder sphincter.  Adults may lose their mobility and are confined to a wheelchair.

Some patients develop scoliosis and pes cavus.  The MRI often shows cerebellar and mild frontal cortical atrophy.

Genetics

This type of spastic paraplegia results from mutations in the paraplegin gene, SPG7 (16q24.3).  It is usually transmitted in an autosomal recessive pattern although heterozygous patients with symptoms have been reported. Evidence suggests that the symptoms arise from a defect in mitochondrial respiration.

Patients with spastic paraplegia 15 (270700) have a similar neurological phenotype plus a flecked retina.  Congenital cataracts are part of the phenotype of spastic paraplegia 46 (614409).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Treatment is symptomatic.  Physical, speech, and occupational therapy may be helpful in selected patients.  Low vision aids may be of benefit in some individuals, at least early in the disease.

References
Article Title: 

Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance

Pfeffer G, Gorman GS, Griffin H, Kurzawa-Akanbi M, Blakely EL, Wilson I, Sitarz K, Moore D, Murphy JL, Alston CL, Pyle A, Coxhead J, Payne B, Gorrie GH, Longman C, Hadjivassiliou M, McConville J, Dick D, Imam I, Hilton D, Norwood F, Baker MR, Jaiser SR, Yu-Wai-Man P, Farrell M, McCarthy A, Lynch T, McFarland R, Schaefer AM, Turnbull DM, Horvath R, Taylor RW, Chinnery PF. Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance. Brain. 2014 Apr 10. [Epub ahead of print].

PubMed ID: 
24727571

A clinical, genetic, and biochemical characterization of SPG7 mutations in a large cohort of patients with hereditary spastic paraplegia

Arnoldi A, Tonelli A, Crippa F, Villani G, Pacelli C, Sironi M, Pozzoli U, D'Angelo MG, Meola G, Martinuzzi A, Crimella C, Redaelli F, Panzeri C, Renieri A, Comi GP, Turconi AC, Bresolin N, Bassi MT. A clinical, genetic, and biochemical characterization of SPG7 mutations in a large cohort of patients with hereditary spastic paraplegia. Hum Mutat. 2008 Apr;29(4):522-31.

PubMed ID: 
18200586

Spastic Ataxia 6, Charlevoix-Saguenay Type

Clinical Characteristics
Ocular Features: 

Patches of myelinated axons from retinal neurons in the retina are not unusual in the general population but are especially prominent among families in Canada with SPAX6.  These typically appear as striated white or yellowish-white patches with 'fuzzy' borders in the nerve fiber layer of the retina and radiate from the disc.   These findings are usually of no functional significance but if sufficiently large and dense can be demonstrated on perimetry as small scotomas.   OCT studies in two Belgian families have revealed increased thickness of the peri-papillary retinal nerve fiber layer in both patients and carriers without clinical evidence of myelination.  In addition the retinal nerve fiber layer has been described as 'hypertrophied' outside the areas of myelination.   Horizontal gaze nystagmus and deficits in conjugate pursuit movements are often present.   

Systemic Features: 

This neurodegenerative disorder begins in early childhood (12-18 months) with signs of cerebellar ataxia, pyramidal signs, and peripheral neuropathy.  Slightly older children develop a mixed-sensorimotor peripheral neuropathy. Dysarthria, limb spasticity, distal muscle wasting, and mitral valve prolapse are often present.  Knee reflexes are exaggerated while ankle reflexes are often absent.  Extensor plantar responses are usually present.  The EMG can show signs of denervation with slowed conduction while brain neuroimaging demonstrates regional atrophy in the cerebellum, especially the superior vermis.  Most patients eventually become wheelchair-bound.  However, cognitive and daily living skills are preserved into adulthood.  Most patients live into the sixth decade.

Genetics

Homozygous or compound heterozygous mutations in the SACS gene (13q12.12) are responsible for this autosomal recessive disorder.

The largest number of cases is found in the Charlevoix-Saguenay region of Quebec, Canada among the descendents of a founder but families have also been found in Asia and Europe.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment for the general disease is available but specific therapies for some functions such as urinary urgency are available.  Physical and speech therapy as well as special education assistance can be helpful for adaptation.

References
Article Title: 

Location score and haplotype analyses of the locus for autosomal recessive spastic ataxia of Charlevoix-Saguenay, in chromosome region 13q11

Richter A, Rioux JD, Bouchard JP, Mercier J, Mathieu J, Ge B, Poirier J, Julien D, Gyapay G, Weissenbach J, Hudson TJ, Melan?sson SB, Morgan K. Location score and haplotype analyses of the locus for autosomal recessive spastic ataxia of Charlevoix-Saguenay, in chromosome region 13q11. Am J Hum Genet. 1999 Mar;64(3):768-75. Erratum in: Am J Hum Genet 1999 Apr;64(4):1257.

PubMed ID: 
10053011
Subscribe to RSS - limb spasticity