leukocoria

Révész Syndrome

Clinical Characteristics
Ocular Features: 

This is likely a severe form of dyskeratosis congenita with an exudative retinopathy in addition to the usual lid deformities, corneal opacification, conjunctival scarring.  The exudates are often present in early childhood, and may be of sufficient volume to present as leukocoria mimicking a retrolental mass.  The exudates extend through nearly all layers of the retina and are said to resemble Coats retinopathy. Vitreous hemorrhage and opacification has also been reported.  Severe vision loss and blindness may occur depending on the degree of retinal and vitreous disease.

Systemic Features: 

Patients with Revesz syndrome have cerebral calcifications, and hypoplasia of the cerebellum in addition to mild signs of dyskeratosis congenita such as a reticulated skin pattern, nail dysplasia, and oral leukoplakia.  Ataxia is a prominent sign but is not present in all patients.  Bone marrow failure with pancytopenia and a high risk of malignancies, however, are serious problems.  Aplastic anemia and neutropenia may present in early childhood while other signs may not appear until late childhood.  Sparse hair, intrauterine growth retardation and low birth weight are also features.   

Few patients with Revesz syndrome have been reported and the clinical features have not been fully delineated.  It is important to note that there is a large amount of clinical variation among patients.

Genetics

Heterozygous mutations in the TINF2 gene (14q12) have been found in Revesz syndrome.  Mutations in the same gene have also been found in the autosomal dominant form of dyskeratosis congenita (613990) suggesting that the two disorders, if distinct, are allelic.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Bone marrow failure may respond favorably to hematopoietic stem cell transplantation, at least for some time. Lifelong medical monitoring is required for the systemic and ocular disease.

References
Article Title: 

Persistent Hyperplastic Primary Vitreous

Clinical Characteristics
Ocular Features: 

Persistence and hyperplasia of the embryonic vitreous in most individuals results in significant ocular morbidity.  It results from a transcription factor deficiency in retinal ganglion cells which in turn negatively impacts development of the retinal vasculature.  As a consequence, the fetal hyaloid vasculature fails to regress and its persistence leads to a retrolental mass.

PHPV usually occurs unilaterally and affected eyes are generally blind from birth. Leukocoria secondary to the presence of a retrolental fibrovascular stalk is easily visible.  Nystagmus is frequently present and some patients have microphthalmos. The anterior segment may also be involved as evidenced by the presence of peripheral anterior synechiae, corneal opacities, cataracts, and glaucoma.  Contracture of the retrolental tissue In the posterior chamber results in the ciliary processes being pulled centrally and can lead to hemorrhage and retinal detachment. 

The clinical manifestations can make it difficult to distinguish from Norrie disease.

Systemic Features: 

No consistent systemic signs have been reported in PHPV individuals.

Genetics

The majority of PHPV cases occur sporadically, but families with transmission patterns compatible with both autosomal recessive and autosomal dominant patterns have been reported.

A six-generation family has been reported in which affected members had homozygous mutations in ATOH7 (10q21.3).  Based on mouse studies, this gene is expressed in the developing optic cup at the time that coincides with retinal ganglion cell formation.  Mice with absence of functioning Atoh7 lack retinal ganglion cells and optic nerves and develop PHPV.

A single family with presumed bilateral PHPV in 3 generations in a pattern consistent with autosomal dominant inheritance has been reported (611308).  However, no genotyping was reported and only the proband and his father had ophthalmologic examinations.

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

No medical or surgical treatment is effective.  The majority of individuals have no light perception.

References
Article Title: 

Norrie Disease

Clinical Characteristics
Ocular Features: 

Norrie disease often presents at birth or soon thereafter with leukocoria.  There may be no response to light even at this early stage.  Microphthalmos, iris atrophy, and synechiae are often noted as well.  The posterior chamber contains a whitish-yellow mass associated with retinal folds and sometimes retinal detachment (pseudoglioma).  The vitreous may appear membranous and fibrovascular, often with traction on the retina.  Cataracts frequently develop early.  These signs may be unilateral or bilateral.  Corneal abnormalities such as opacities or sclerocornea may be present.  The mass in the posterior pole has to be distinguished from a retinoblastoma but the appearance may also resemble familial exudative vitreoretinopathy, Coats disease, persistent hyperplastic vitreous retinopathy, or retinopathy of prematurity.

Histology shows hemorrhagic necrosis of an undifferentiated glial mass.  The primary defect seems to lie in the neuroretina with absence of the ganglion cells and dysplasia of the remaining layers.  Many eyes become phthisical.

Systemic Features: 

Many individuals have growth and developmental delays with cognitive impairment and/or behavioral disorders (50%).  Frank psychoses have been reported in some patients.  Approximately 10% of patients have a chronic seizure disorder. Sensorineural deafness of some degree develops by the second decade in up to 100% of individuals.

Peripheral vascular disease (varicose veins, venous stasis ulcers, and erectile dysfunction) is present in nearly all men over the age of 50 years, perhaps the result of small vessel angiopathy.  Its age of onset is similar to that of the hearing deficit and the time course of progression is similar.

Genetics

This is an X-linked disorder as a result of mutations in the NDP gene (Xp11.4) encoding norrin.  Many mutations causing Norrie disease are novel or at least rare as might be expected for a disorder that leads to a marked reduction in reproductive fitness in males.  Carrier females usually do not have any evidence of disease.

Mutations in NDP also are responsible for a sex-linked form of familial exudative vitreoretinopathy, EVR2 (305390).  They have also been found in some cases of persistent hyperplastic primary vitreous and even in Coates' disease.  The latter conditions are usually present unilaterally, however, and some consider bilaterality to be a characteristic of NDP-related retinopathies.

Pedigree: 
X-linked recessive, carrier mother
X-linked recessive, father affected
Treatment
Treatment Options: 

No effective treatment is available.

References
Article Title: 

Mutations in the Norrie disease gene

Schuback DE, Chen ZY, Craig IW, Breakefield XO, Sims KB. Mutations in the Norrie disease gene. Hum Mutat. 1995;5(4):285-92.

PubMed ID: 
7627181

Retinoblastoma

Clinical Characteristics
Ocular Features: 

Retinoblastoma is the most common intraocular malignancy of childhood occurring in 1 in 18,000 to 1 in 30,000 live births worldwide. The majority of cases are diagnosed before the age of 3 years. The most common clinical feature at time of diagnosis is leukocoria (white pupillary reflex) followed by strabismus. Other presenting features include intraocular inflammation, spontaneous hyphema, hypopyon, heterochromia, proptosis, spontaneous globe perforation, retinal detachment, cataract, neovascularization of iris, glaucoma, nystagmus, tearing and anisocoria.

Retinoblastoma can usually be observed during fundus exam as a white subretinal or vitreous mass, occasionally with multifocal nodules, typically with calcification of the surface. The growth of the tumor can be endophytic, exophytic or diffuse. Endophytic growth of retinoblastoma occurs when the tumor penetrates the inner limiting membrane of the retina and can result in vitreous seeding and growth and can simulate iridocyclitis or endophthalmitis.  Exophytic growth occurs when the tumor grows into the subretinal space, which results in accumulation of subretinal fluid and retinal detachments. If the tumor infiltrates Bruchs membrane, there is an increased risk of invasion of choroidal vessels or ciliary nerves and vessels. Diffuse growth is rare and characterized by slow infiltration of retina with diffuse thickening.

Imaging studies such as ultrasound, computerized tomography, and MRI can show the extent of tumor and the presence of calcification.

Systemic Features: 

In heritable cases there is an increased risk of developing other malignant neoplasms throughout life such as osteosarcomas, cutaneous melanomas, pinealomas, and thyroid carcinomas. The risk for secondary malignancies is higher in areas treated with radiation, where osteogenic sarcoma, fibrosarcoma and soft tissue sarcomas may occur. Patients should be closely monitored for secondary tumors throughout life.

Genetics

Retinoblastoma is a malignant tumor of the developing retinal cells caused in most cases by mutations in both copies of the RB1 gene.  The RB1 gene is a tumor suppressor gene, located on chromosome 13q14 and is the first human cancer gene to be cloned. The gene codes for the tumor suppressor protein pRB, which by binding to the transcription factor E2F, inhibits the cell from entering the S-phase during mitosis.  Recent evidence suggests that post-mitotic cone precursors are uniquely sensitive to pRB depletion and may be the cells in which retinoblastoma originates.

However, more recent information suggests that the occurrence and viability of retinoblastic cells may be more complex than suggested by simple loss of function of the RB1 alleles.  There is increasing evidence for the role of epigenetic factors such as DNA methylation impacting the differential expression of more than 100 additional genes which may be influencing the retinoblastoma phenotype.  Among these is an upregulation of spleen tyrosine kinase (SYK) required for tumor cell survival which, if inhibited, leads to retinoblastoma cell death in vivo and in vitro.

Pedigrees of familial cases have an autosomal dominant pattern but the disease requires homozygosity of the RB1 mutation.  This complicates genetic counseling for retinoblastoma. One third of cases have a germline mutation with a mutation in only one of the two gene copies in every cell.  A somatic mutation in the second allele then leads to  homozygosity causing tumor development.  Since one of the parents contributed the germinal mutation, and there is high penetrance (as much as 85%), this leads to the autosomal dominant pattern in these families. In 6% of retinoblastoma cases with germline mutations the family history is positive. The risk for developing bilateral and multifocal retinoblastoma is high and the age of onset is around 14 months.  This is the case for virtually all bilateral tumors.  The mean number of tumors is about 5 in the two eyes.  The offspring of a parent with bilateral retinoblastoma have a 45% chance of developing a tumor (they have a 50% chance of inheriting the germline mutant allele).  Reduced penetrance of 10 to 15% lowers the expected occurrence of disease from 50% to 45%.

However, two thirds of cases are of non-germinal origin with both somatic mutations occurring in a single retinal progenitor cell.  Because this is a highly unlikely event, these cases are generally unilateral and unifocal with an average age of onset of 24 months. Sporadic cases constitute about 94% of all retinoblastomas, of which about 60% have unilateral disease with no germline mutations.  Individuals who acquire mutations in both alleles somatically (with single, unilateral tumors) do not have a mutation in their germ cells and therefore usually transfer no tumor risk to their offspring.  Laterality and number of tumors alone, however, cannot be used for accurate predictions in this case since about 15% of patients with unilateral and monofocal tumors actually have germline mutations.  This leaves a residual risk of transferring heritability of about 1-5% in unilateral patients without a family history.

To further complicate the story, recent evidence suggests that retinoblastoma is genetically heterogeneous.  About 6% of patients have no RB1 mutation.  In one study, about half of such individuals have up-regulation of the MYCN oncogene (2p24.3) suggesting a second mechanism leading to clinical retinoblastoma.  For unknown reasons, such tumors tend to  be larger, more aggressive, and discovered at an earlier age than unilateral non-familial RB1 tumors.  The MYCN gene product is a transcription factor important for organ development during embryogenesis.  Its amplification has been implicated in about 25% of neuroblastomas.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Enucleation may be necessary to eliminate the primary tumor, especially large ones, but other treatments can be used successfully to treat smaller tumors and spare vision. Intravenous chemotherapy is the most common treatment, which can be combined with subtenon chemotherapy, cryotherapy, thermotherapy, and plaque brachytherapy. External beam radiation can be used for refractive cases and recurrences. Another treatment alternative is localized ophthalmic artery intra-arterial chemotherapy.

It is necessary to follow all offspring of parents with bilateral tumors throughout the first decade because of the risk for new tumor development, as late as 5 to 7 years of age.   There are even a few case reports of retinoblastoma diagnosed in adults. However, since the retinal cells are generally mature by the age of 2.5 years, such events are very rare.  All parents of children with retinoblastoma should have complete fundus evaluations since rare tumors spontaneously regress leaving retinal scars, which in such a family pattern suggests that a germline mutation was inherited.

Survivors of hereditary retinoblastomas must be followed the rest of their lives, and especially so if radiation treatment was applied, because of the high risk of developing secondary neoplasms.  The risk rises with age.

References
Article Title: 

Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies

Rushlow DE, Mol BM, Kennett JY, Yee S, Pajovic S, Th?(c)riault BL, Prigoda-Lee NL, Spencer C, Dimaras H, Corson TW, Pang R, Massey C, Godbout R, Jiang Z, Zacksenhaus E, Paton K, Moll AC, Houdayer C, Raizis A, Halliday W, Lam WL, Boutros PC, Lohmann D, Dorsman JC, Gallie BL. Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies. Lancet Oncol. 2013 Mar 12:327-34.

PubMed ID: 
23498719

A novel retinoblastoma therapy from genomic and epigenetic analyses

Zhang J, Benavente CA, McEvoy J, Flores-Otero J, Ding L, Chen X, Ulyanov A, Wu G, Wilson M, Wang J, Brennan R, Rusch M, Manning AL, Ma J, Easton J, Shurtleff S, Mullighan C, Pounds S, Mukatira S, Gupta P, Neale G, Zhao D, Lu C, Fulton RS, Fulton LL, Hong X, Dooling DJ, Ochoa K, Naeve C, Dyson NJ, Mardis ER, Bahrami A, Ellison D, Wilson RK, Downing JR, Dyer MA. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature. 2012 Jan 11;481(7381):329-34.

PubMed ID: 
22237022
Subscribe to RSS - leukocoria