CNGB3

Stargardt Disease

Clinical Characteristics
Ocular Features: 

Stargardt disease or fundus flavimaculatus is a progressive form of juvenile macular degeneration with considerable clinical and genetic heterogeneity.  It may be considered a syndromal cone-rod dystrophy because of overlapping clinical features such as loss of color vision and photophobia in some patients.  Adding to the confusion is the fact that mutations in at least 4 genes are responsible for similar clinical characteristics.  Due to the lack of diagnostic distinctions and the wide range of nonspecific clinical manifestations, Stargardt disease and fundus flavimaculatus are discussed here as a single entity.

Onset of vision loss is often noted late in the first decade of life usually with rapid progression.  However, some patients are asymptomatic until much later, even into the fifth decade.  There is evidence that patients with an early onset have a worse prognosis compared to those with a later onset.  Nevertheless, large series of patients contain at least 23% with 20/40 or better acuity, about 20% with 20/50 -20/100, 55% have 20/200-20/400, and a small number have vision less than 20/400. 

Some color discrimination is lost and photophobia may be a complaint.  Dark adaptation is prolonged but nightblindness does not usually occur and peripheral visual fields are normal.  The posterior pole characteristically has yellowish pisciform, round, and linear subretinal lipofuscin deposits which often extend to the equator.  These may be present before clinical symptoms are present.  Histopathology reveals accumulations of this material in RPE cells.  Atrophy of the RPE in the same region is often visible as well but these changes may be subtle initially.  Some patients have peripheral pigment clumping which may resemble the bone spicule configuration seen in retinitis pigmentosa.  However, retinal vessel caliber is normal in Stargardt disease.  Extensive macular disease can be associated with temporal pallor of the optic nerve.  The ERG shows reduced photopic responses with normal or near normal scotopic tracings.  Fluorescein angiography often reveals more extensive disease than seen on fundoscopy.  Window defects are common in the macula where the RPE is atrophied.  The flecks may be hypo- or hyperfluorescent.  Over 50% of patients have patches of angiographically dark choroid in the posterior pole which is thought to be secondary to transmission blockage by lipofuscin accumulations in the RPE. 

Systemic Features: 

None.

Genetics

This group of disorders may be caused by mutations in at least 4 genes.  These are: STGD1 (248200) caused by mutations in the ABCA4 gene located at 1p22.1, or in CNGB3 (262300) (8q21-q22) which also is mutant in achromatopsia 3 (ACHM3), STGD3 (605512) caused by mutations in the ELOVL4 gene at 6q14, and STGD4 (603786) caused by a mutation in PROM1 on chromosome 4p.  STGD4 and STGD3 disease have been found in pedigrees consistent with autosomal dominant inheritance but STGD1 disease seems to be inherited in an autosomal recessive pattern.

Genotyping is necessary for accurate diagnostic determinations.  In particular, a few patients clinically found to have typical areolar macular dystrophy, retinitis pigmentosa, juvenile macular degeneration, and cone dystrophies have been reported in association with several of these mutations and reports have also associated Stargardt disease with mutations in RDS.

A single family with a brother and sister with Stargardt disease and neurological malformations has been reported (612948).  Both had developmental delays associated with absence or hypoplasia of the corpus callosum, upslanted lid fissures, 'flared eyebrows', a broad nasal tip, a broad face with a pointed chin, and sensorineural hearing loss along with mild digital malformations.  Evidence of macular degeneration was seen at age 7 years and vision in both individuals was in the 20/100-20/200 range. No associated locus or mutation has been identified.

Pedigree: 
Autosomal dominant
Autosomal recessive
Treatment
Treatment Options: 

There is no treatment for this disorder but low vision aids can be helpful especially in the early stages of the disease.

Isotretinoin has been shown to slow the accumulation of lipofuscin pigments in mice but its role in human Stargardt disease has not been reported.  Trials using stem cells are underway with encouraging early results.

References
Article Title: 

Comprehensive analysis of patients with Stargardt macular dystrophy reveals new genotype-phenotype correlations and unexpected diagnostic revisions

Zaneveld J, Siddiqui S, Li H, Wang X, Wang H, Wang K, Li H, Ren H, Lopez I, Dorfman A, Khan A, Wang F, Salvo J, Gelowani V, Li Y, Sui R, Koenekoop R, Chen R. Comprehensive analysis of patients with Stargardt macular dystrophy reveals new genotype-phenotype correlations and unexpected diagnostic revisions. Genet Med. 2014 Dec 4.  [Epub ahead of print].

PubMed ID: 
25474345

Colorblindness-Achromatopsia 3

Clinical Characteristics
Ocular Features: 

Achromatopsia 3 is a congenital, nonprogressive form of blindness.  It is sometimes referred to as a rod monochromacy or stationary cone dystrophy.  Symptoms are usually present at birth or shortly thereafter.  Patients have pendular nystagmus, progressive lens opacities, severe photophobia, 'day' blindness, and, of course, color blindness.  High myopia is a feature in some populations.  Vision in daylight is often 20/200 or less but vision in dim light is somewhat better. The central scotoma often leads to eccentric fixation. 

The ERG shows a complete absence of cone function.  Optical coherence tomography has demonstrated a reduction in macular volume and thickness of the central retina, most marked in the foveolar region, presumably due in some way to the absence or dysfunction of cone photoreceptors.  Few histologic studies of adequately preserved retina have been reported but those available suggest dysmorphism of cones in the central macula.  The clinical appearance of the retina is usually normal. 

Systemic Features: 

There are no associated systemic abnormalities. 

Genetics

This is an autosomal recessive form of color blindness caused by mutations in CNGB3 (8q21-q22).  This mutation is found in nearly half of patients with achromatopsia.  It is especially common among Pingelapese islanders of the Pacific Caroline Islands where consanguinity occurs frequently due to the founder effect resulting from a 1775 typhoon.  A progressive cone dystrophy has been found in a few patients with mutations in this gene.

Other achromatopsia mutations are in CNGA3 causing ACHM2 (216900), GNAT2 causing ACHM4 (139340), and PDE6C causing ACHM5 (613093).   

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available but darkly tinted lenses can alleviate much of the photophobia.  Low vision aids and vocational training should be offered.  Refractive errors should, of course, be corrected and periodic examinations are especially important in children. 

References
Article Title: 

The cone dysfunction syndromes

Michaelides M, Hunt DM, Moore AT. The cone dysfunction syndromes. Br J Ophthalmol. 2004 Feb;88(2):291-7. Review.

PubMed ID: 
14736794
Subscribe to RSS - CNGB3