short stature

Cockayne Syndrome, Type B

Clinical Characteristics
Ocular Features: 

The eyes are deep-set.  Congenital cataracts are present in 30% of infants.  The aggressive course of this form of CS has precluded full delineation of the ocular features but infants have been described with microphthalmos, microcornea and iris hypoplasia. 

Systemic Features: 

Evidence of somatic and neurologic delays is present at birth or shortly thereafter with microcephaly and short stature.  Infants never develop normal milestones and may not grow in size beyond that of a 6 month-old child.  Communication skills are minimal.  They have a progeroid appearance, age rapidly, and most do not live beyond 5 years of age.   Feeding problems are common with considerable risk of aspiration, a common cause of respiratory infections and early death.  Severe flexion contractures develop early and may interfere with motor function.  Tremors and weakness contribute as well.  The skin is sensitive to UV radiation in some but not all patients.  However, the frequency of skin cancer is not increased.  Endogenous temperature regulation may be a problem. 

At least some cases with what has been called cerebro-oculo-facio-skeletal syndrome have been genotypically documented to have type B CS, the severe form of Cockayne syndrome.

Genetics

This is an autosomal recessive disorder resulting from mutations in ERCC6 (10q11) rendering the excision-repair cross-complementing protein ineffective in correcting defects during DNA replication.  Mutations in this gene account for about 75% of CS patients.  However, using date of onset and clinical severity, type A CS (216400) disease is far more common even though the ERCC8 mutations are found in only 25% of individuals.  Type A CS (216400) also has a somewhat later onset and is less severe in early stages.

Type III (216411) is poorly defined but seems to have a considerably later onset and milder disease.  The mutation is type III is unknown.

Some patients have combined  phenotypical features of cerebrooculofacioskeletal syndrome (214150) and xeroderma pigmentosum (XP) known as the XP-CS complex (216400).  Defective DNA repair resulting from mutations in excision-repair cross-complementing or ERCC genes is common to both disorders.  Two complementation groups have been identified in CS and seven in XP.  XP patients with CS features fall into only three (B, D, G) of the XP groups.  XP-CS patients have extreme skin photosensitivity and a huge increase in skin cancers of all types.  They also have an increase in nervous system neoplasms. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Feeding tubes may be necessary to maintain nutrition.  Protection from the sun is important.  Physical therapy can be used to minimize contractures.  Cataract surgery might be considered in selected cases as well as assistive devices for hearing problems but the limited lifespan should be considered. 

References
Article Title: 

The Cockayne Syndrome Natural History (CoSyNH) study: clinical findings in 102 individuals and recommendations for care

Wilson BT, Stark Z, Sutton RE, Danda S, Ekbote AV, Elsayed SM, Gibson L, Goodship JA, Jackson AP, Keng WT, King MD, McCann E, Motojima T, Murray JE, Omata T, Pilz D, Pope K, Sugita K, White SM, Wilson IJ. The Cockayne Syndrome Natural History (CoSyNH) study: clinical findings in 102 individuals and recommendations for care. Genet Med. 2015 Jul 23. doi: 10.1038/gim.2015.110. [Epub ahead of print].

PubMed ID: 
26204423

Cockayne syndrome and xeroderma pigmentosum

Rapin I, Lindenbaum Y, Dickson DW, Kraemer KH, Robbins JH. Cockayne syndrome and xeroderma pigmentosum. Neurology. 2000 Nov 28;55(10):1442-9. Review. PubMed PMID:

PubMed ID: 
11185579

Cockayne Syndrome, Type A

Clinical Characteristics
Ocular Features: 

A progressive pigmentary retinopathy of a salt-and-pepper type and optic atrophy are commonly seen.  Retinal vessels are often narrowed and older patients can have typical bone spicule formation.  Night blindness, strabismus, and nystagmus may be present as well.  Enophthalmos, hyperopia, poor pupillary responses, and cataracts have been observed.  The lens opacities may in the nucleus or in the posterior subcapsular area and are often present in early childhood.  The ERG is often flat but may show some scotopic and photopic responses which are more marked in older individuals.  Vision loss is progressive but is better than expected in some patients based on the retina and optic nerve appearance.  The cornea may have evidence of exposure keratitis as many patients sleep with their eyes incompletely closed.  Recurrent corneal erosions have been reported in some patients.

The complete ocular phenotype and its natural history have been difficult to document due to the aggressive nature of this disease.

Ocular histopathology in a single patient (type unknown) revealed widespread pigment dispersion, degeneration of all retinal layers as well as thinning of the choriocapillaris and gliosis of the optic nerve.  Excessive lipofuscin deposition in the RPE was seen.

Systemic Features: 

Slow somatic growth and neural development are usually noted in the first few years of life.  Young children may acquire some independence and motor skills but progressive neurologic deterioration is relentless with loss of milestones and eventual development of mental retardation or dementia.  Patients often appear small and cachectic, with a 'progeroid' appearance.  The hair is thin and dry, and the skin is UV-sensitive but the risk of skin cancer is not increased.  Sensorineural hearing loss and dental caries are common.  Skeletal features include microcephaly, kyphosis, flexion contractures of the joints, large hands and feet, and disproportionately long arms and legs.  Perivascular calcium deposits are often seen, particularly in various brain structures while the brain is small with diffuse atrophy and patchy demyelination of white matter.  Peripheral neuropathy is characterized by slow conduction velocities.  Poor thermal regulation is often a feature. 

Type A is considered the classic form of CS.  Neurological deterioration and atherosclerotic disease usually lead to death early in the 2nd decade of life but some patients have lived into their 20s.  

Genetics

There is a great deal of clinical heterogeneity in Cockayne syndrome.  Type A results from homozygous or heterozygous mutations in ERCC8 (5q12).  CS type B (133540), is caused by mutations in ERCC6, and has an earlier onset with more rapidly progressive disease.  Both mutations impact excision-repair cross-complementing proteins important for DNA repair during replication.

Type III (216411) is poorly defined but seems to have a considerably later onset and milder disease.  The mutation in type III is unknown. 

Some patients have combined phenotypical features of Cockayne syndrome (CS) and xeroderma pigmentosum (XP) known as the XP-CS complex (216400).  Defective DNA repair resulting from mutations in nucleotide excision-repair cross-complementing or ERCC genes is common to both disorders.  Two complementation groups have been identified in CS and seven in XP.  XP patients with CS features fall into only three (B, D, G) of the XP groups.  XP-CS patients have extreme skin photosensitivity and a huge increase in skin cancers of all types.  They also have an increase in nervous system neoplasms. 

There may be considerable overlap in clinical features and rate of disease progression among all types.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No specific treatment is available for Cockayne syndrome.  Supportive care for specific health problems, such as physical therapy for joint contractures, is important. 

Justification of cataract extraction should be made on a case by case basis.  Lagophthalmos requires that corneal lubrication be meticulously maintained.

References
Article Title: 

The Cockayne Syndrome Natural History (CoSyNH) study: clinical findings in 102 individuals and recommendations for care

Wilson BT, Stark Z, Sutton RE, Danda S, Ekbote AV, Elsayed SM, Gibson L, Goodship JA, Jackson AP, Keng WT, King MD, McCann E, Motojima T, Murray JE, Omata T, Pilz D, Pope K, Sugita K, White SM, Wilson IJ. The Cockayne Syndrome Natural History (CoSyNH) study: clinical findings in 102 individuals and recommendations for care. Genet Med. 2015 Jul 23. doi: 10.1038/gim.2015.110. [Epub ahead of print].

PubMed ID: 
26204423

Ocular findings in Cockayne syndrome

Traboulsi EI, De Becker I, Maumenee IH. Ocular findings in Cockayne syndrome. Am J Ophthalmol. 1992 Nov 15;114(5):579-83.

PubMed ID: 
1443019

Cockayne syndrome and xeroderma pigmentosum

Rapin I, Lindenbaum Y, Dickson DW, Kraemer KH, Robbins JH. Cockayne syndrome and xeroderma pigmentosum. Neurology. 2000 Nov 28;55(10):1442-9. Review. PubMed PMID:

PubMed ID: 
11185579

Fucosidosis

Clinical Characteristics
Ocular Features: 

Retinal and conjunctival vessels may appear tortuous, dilated, and irregular in diameter, characteristics sometimes seen in Fabry disease.  Diffuse opacities may be seen in the superficial cornea but do not have the whorl-like pattern seen in Fabry disease.  The majority of ocular cells contain cytoplasmic, membrane-bound aggregates of fibrillogranular and multilaminated material.  The orbits may be shallow as a result of bony dysplasia of the cranial bones. 

Systemic Features: 

The coarse facial features have been described as "Hurler-like".  Two major types have been described: type 1 with onset in the first 6 months of life and rapid psychomotor and general neurologic deterioration, and the later onset, less severe type 2 in which angiokeratomas resembling Fabry disease occur.  Infants with type 1 may not survive beyond one year of age.  The Hurler-like face is less pronounced and the neurologic deterioration is less rapid in type 2 with survival often into the third decade or later.  The intracellular accumulation of glycolipids and glycoproteins leads to cell death accounting for the progression of CNS disease.   Abnormal bone growth (dysostosis multiplex) can lead to short stature.  Elevated sweat NaCl, hypohidrosis, and poor temperature control can be a feature of both types but this is more pronounced in type 1.  The DNA mutation is the same in both types and there may be overlap in some of the clinical features.  Furthermore, both types have been reported in the same family.

Low levels of alpha-L-fucosidase can be detected in plasma, urine, and leukocytes.  Glycolipids and glycoproteins have also been shown to accumulate in the cells of the skin, liver, spleen, pancreas and kidneys. 

Genetics

Fucosidosis is a rare, progressive, autosomal recessive, lysosomal storage disease in which fucose accumulates in tissue as a result of defective alpha-L-fucosidase.  The responsible mutations are found in the FUCA1 gene (1p34). 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No treatment is available for the primary disease.  A multidisciplinary supportive program can be beneficial for some patients.  Respiratory therapy especially is important to reduce the threat of infections.

References
Article Title: 

Fucosidosis revisited: a review of 77 patients

Willems PJ, Gatti R, Darby JK, Romeo G, Durand P, Dumon JE, O'Brien JS. Fucosidosis revisited: a review of 77 patients. Am J Med Genet. 1991 Jan;38(1):111-31. Review.

PubMed ID: 
2012122

Neuraminidase Deficiency

Clinical Characteristics
Ocular Features: 

A cherry red spot is may be seen in late childhood or early adolescence.  It occurs in nearly 100% of patients with type I while only 75% of type II patients have this feature possibly because their early death from the more severe systemic disease prevents full ascertainment.  Visual acuity is reduced, sometimes severely.  Some but not all individuals have corneal and lens opacities.  A subtle corneal haze has also been seen.  Nystagmus has been reported. 

Systemic Features: 

This is a neurodegenerative disorder with progressive deterioration of muscle and central nervous system functions.  Myoclonus, mental deterioration, hepatosplenomegaly, muscle weakness and atrophy are common.  The defect in neuraminidase activity leads to abnormal amounts of sialyl-oligosaccharides in the urine.  Spinal deformities such as kyphosis are common.  Deep tendon reflexes are exaggerated.  Ataxia and hearing loss may be present.  Coarse facies, a barrel chest, and short stature are characteristic.  Hepatic cells contain numerous vacuoles and numerous inclusions.

Sialidosis types I and II are both caused by mutations in the neuroaminidase gene.  Type I is associated with milder disease than type II which has an earlier age of onset and may present in infancy or even begin in utero.  Early death within two years of age is common in the congenital or infantile forms.  There is, however, significant variability in age of onset and the course of disease among types. 

Genetics

The sialidoses are autosomal recessive lysosomal storage disorders resulting from mutations in the NEU1 gene (6p21.3) which lead to an intracellular accumulation of glycoproteins containing sialic acid residues.  Both types I and II are caused by mutations in the same gene. 

Treatment
Treatment Options: 

Treatment is focused on symptom management. 

References
Article Title: 

Warburg Micro Syndrome 1

Clinical Characteristics
Ocular Features: 

Microphthalmia with microcornea, lens opacities, small and unresponsive pupils, and optic atrophy are the outstanding ocular features of this syndrome. Some but not all have ERG evidence of rod and cone dysfunction.  The VEP is usually abnormal.  Short palpebral fissures have been described. 

Systemic Features: 

Patients with the micro syndrome have many somatic and neurologic abnormalities.  Some degree of psychomotor retardation and developmental delays is common.  Both spasticity and hypotonia have been described.  Some patients have seizures.  Facial hypertrichosis, anteverted ears, and a broad nasal bridge are often noted.   There may be absence of the corpus callosum while diffuse cortical and subcortical atrophy and pachygyria may be evident on MRI imaging.  Hypogenitalism in males has been described.  Microcephaly is inconsistently present. 

Genetics

This disorder is caused by homozygous mutations in the RAB3GAP1 gene (2q21.3) and therefore inherited in an autosomal recessive pattern.

At least three other forms of Warburg Micro Syndrome have been reported: WARBM2 (614225) caused by homozygous mutations in RAB3GAP2, WARBM3 (614222) resulting from homozygous mutations in RAB18, and WARBM4 (615663) secondary to homozygous mutations in TBC1D20.  

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No effective treatment is available.  Vision remains subnormal even after cataracts are removed. 

References
Article Title: 

New RAB3GAP1 mutations in patients with Warburg Micro Syndrome from different ethnic backgrounds and a possible founder effect in the Danish

Morris-Rosendahl DJ, Segel R, Born AP, Conrad C, Loeys B, Brooks SS, M?oller L,Zeschnigk C, Botti C, Rabinowitz R, Uyanik G, Crocq MA, Kraus U, Degen I, Faes F. New RAB3GAP1 mutations in patients with Warburg Micro Syndrome from different ethnic backgrounds and a possible founder effect in the Danish. Eur J Hum Genet. 2010 Oct;18(10):1100-6.

PubMed ID: 
20512159

GM1 Gangliosidosis

Clinical Characteristics
Ocular Features: 

Based on clinical manifestations, three types have been described: type I or infantile form, type II or late-infantile/juvenile form, and type III or adult/chronic form but all are due to mutations in the same gene.  Only the infantile form has the typical cherry red spot in the macula but is present in only about 50% of infants.  The corneal clouding is due to intracellular accumulations of mucopolysaccharides in corneal epithelium and keratan sulfate in keratocytes.  Retinal ganglion cells also have accumulations of gangliosides.  Decreased acuity, nystagmus, strabismus and retinal hemorrhages have been described. 

Systemic Features: 

Infants with type I disease are usually hypotonic from birth but develop spasticity, psychomotor retardation, and hyperreflexia within 6 months.  Early death from cardiopulmonary disease or infection is common.  Hepatomegaly, coarse facial features, brachydactyly, and cardiomyopathy with valvular dysfunction are common.  Dermal melanocytosis has also been described in infants in a pattern some have called Mongolian spots.  Skeletal dysplasia is a feature and often leads to vertebral deformities and scoliosis.  The ears are often large and low-set, the nasal bridge is depressed, the tongue is enlarged and frontal bossing is often striking.  Hirsutism, coarse skin, short digits, and inguinal hernias are common.

The juvenile form, type II, has a later onset with psychomotor deterioration, seizures and skeletal changes apparent between 7 and 36 months and death in childhood.  Visceral involvement and cherry-red spots are usually not present. 

Type III, or adult form, is manifest later in the first decade or even sometime by the 4th decade.  Symptoms and signs are more localized.  Neurological signs are evident as dystonia or speech and gait difficulties.  Dementia, parkinsonian signs, and extrapyramidal disease are late features.  No hepatosplenomegaly, facial dysmorphism, or cherry red spots are present in most individuals. Lifespan may be normal in this type. 

Genetics

This is an autosomal recessive lysosomal storage disease secondary to a mutations in GLB1 (3p21.33).  It is allelic to Morquio B disease (MPS IVB) (253010).  The mutations in the beta-galactosidase-1 gene result in intracellular accumulation of GM1 ganglioside, keratan sulfate, and oligosaccharides.  The production of the enzyme varies among different mutations likely accounting for the clinical heterogeneity. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

There is no treatment that effectively alters the disease course. 

References
Article Title: 

Hurler and Scheie Syndromes (MPS IH, IS, IH/S)

Clinical Characteristics
Ocular Features: 

Progressive corneal clouding is a major feature and appears early in life.  Intracellular accumulations of heparan and dermatan sulfate are responsible for the ground glass appearance.  However, congenital glaucoma also occurs in MPS I and must be considered as a concomitant cause of a diffusely cloudy cornea.

Abnormal storage of mucopolysaccharides has been found in all ocular tissues and in the retina leads to a pigmentary retinopathy.  The ERG may be abolished by 5 or 6 years of age.  Papilledema is often followed by optic atrophy.  Photophobia is a common symptom.  Shallow orbits give the eyes a prominent appearance.

Systemic Features: 

This group of lysosomal deficiency diseases is probably the most common.  MPS I is clinically heterogeneous encompassing three clinical entities: Hurler, Hurler-Scheie, and Scheie.  In terms of clinical severity, Hurler is the most severe and Scheie is the mildest.  Infants generally appear normal at birth and develop the typical coarse facial features in the first few months of life.  Physical growth often stops at about 2 years of age.  Skeletal changes of dysostosis multiplex are often seen and kyphoscoliosis is common as vertebrae become flattened.  The head is large with frontal bossing and a depressed nasal bridge.  Cranial sutures, especially the metopic and sagittal sutures, often close prematurely.  The lips are prominent and an open mouth with an enlarged tongue is characteristic.  The neck is often short.  Odontoid hypoplasia increases the risk of vertebral subluxation and cord compression.  Joints are often stiff and arthropathy eventually affects all joints.  Claw deformities of the hands and carpal tunnel syndrome are common.  Most patients are short in stature and barrel-chested.

Cardiac valves often are thickened and endocardial fibroelastosis is frequently seen.  The coronary arteries are often narrowed.  Respiratory obstructions are common and respiratory infections can be serious problems.  Hearing loss is common.

Most patients reach a maximum functional age of 2 to 4 years and then regress.  Language is limited.  Untreated, many patients die before 10 years of age.

Genetics

The Hurler/Scheie phenotypes are all the result of mutations in the IDUA gene (4p16.3).  They are inherited in an autosomal recessive pattern.  A deficiency in alpha-L-iduronidase causes three phenotypes: Hurler (607014; MPS IH), Hurler-Scheie (607015; MPS IH/S), and Scheie (607016; MPS IS) syndromes.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Various treatments have had some success.  Enzyme replacement using laronidase (Aldurazyme©) has been shown to reduce organomegaly and improve motor and respiratory functions.  It has been used alone and in combination with bone marrow transplantation but therapeutic effects are greater if given to younger patients.  It does not improve skeletal defects or corneal clouding.  MRI imaging has documented improvement in CNS signs.  Gene therapy has shown promise but remains experimental.  Regular lifelong monitoring is important using a multidisciplinary approach to identify potential problems.  Joint problems may be surgically correctable with special emphasis on the need for atlanto-occipital stabilization.  Corneal transplants may be helpful in the restoration of vision in selected patients.

References
Article Title: 

Osteogenesis Imperfecta

Clinical Characteristics
Ocular Features: 

Blue sclerae, especially at infancy, is the most visible ocular sign in osteogenesis imperfecta but it is not always present.  It is also often present in normal infants.  In some patients, it is present early but disappears later in life. Some patients have significantly lower ocular rigidity, corneal diameters, and decreased globe length.  Interestingly, the intensity of the blue color in the sclerae does not seem to be correlated with scleral rigidity.

Systemic Features: 

A defect in type I collagen leading to brittle bones and frequent fractures is the systemic hallmark of this group of disorders.  Clinical and genetic heterogeneity is evident. The nosology is as yet not fully established and will likely require more molecular information.  Type I is considered the mildest of the several forms that have been reported.  Relatively minor trauma during childhood and adolescence can lead to fractures while adults have less risk.  Fractures generally heal rapidly without deformities  and with good callous formation in patients with milder disease.  However, those with more serious disease often end up with deformities and bowed bones.

Short stature, hearing loss, easy bruising, and dentinogenesis imperfecta are often seen as well.

Type II is more severe and fractures often occur in utero.  Fractures may involve long bones, skull bones and vertebrae.  At birth the rib case appears abnormally small and the underdeveloped pulmonary system may lead to severe respiratory problems and even death in some newborns.

Genetics

A number of conditions are associated with fragile bones and the classification of these in the early literature is confusing.  More confusion arises from classification schemes based solely on clinical degrees of severity.   

The designation ‘osteogenesis imperfecta’ is most accurately applied to disorders caused by construction defects in type I collagen fibers which are responsible in 90% of affected individuals.  The defect may occur in either the pro-alpha 1 or pro-alpha 2 chains which together form type I collagen.  The responsible genes are COL1A1 (17q21.31) and COL1A2 (7q22.1).  Clinical types I (166200), IIA (166210), III (259420), and IV (166220) map to these two loci.  The inheritance pattern is autosomal dominant.

Mutations in the CRTAP gene (610854; 3p22) cause an autosomal recessive OI-like phenotype classified as type VII while type VIII is an autosomal recessive OI-like disorder secondary to mutations in LEPRE1 (610915; 1p34).  However, these disorders, while clinically sharing some features of true OI, are better designated as separate conditions based on their unique molecular etiologies.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Avoidance of trauma is paramount.   Periodic intravenous administration of pamidronate can increase bone density and reduce the risk of fractures. Oral bisphosphonates do not seem to be beneficial.  Prompt reduction of fractures is important to the prevention of deformities. A multidisciplinary team is important for the treatment and rehabilitation of patients.

References
Article Title: 

Neurofibromatosis Type I

Clinical Characteristics
Ocular Features: 

Melanocytic iris hamartomas, sometimes called Lisch nodules, are considered pathognomonic of this disease but are found in only about 75% of patients.  These appear as sharply defined, smooth masses on the stromal surface and consist of spindle cells of melanocytic origin.  Their presence correlates with the severity of skin freckles and cafe-au-lait spots.  Also characteristic of neurofibromatosis 1 are eyelid fibromas causing ptosis and the familiar horizontal S-sign in the upper lid margin but these are only found in one-third of patients.  Ciliary body cysts have been reported to occur at a frequency of 78%, or 10 times more frequently than in unaffected individuals.  Nearly half of patients have occludable anterior chamber angles (Types 1 and 2).

Gliomas of the optic nerves, chiasm or optic tracts are slow growing astrocytomas that occur in about 15% of children at a mean age of about 5 years.  While these comprise the most common intracranial tumors in NF1, they typically have a benign course and may even regress.  However, some present as precocious puberty and severe loss of acuity may occur before discovery.

Vascular lesions of the retina are also sometimes seen and may be responsible for rubeosis and neovascular glaucoma.

Systemic Features: 

Vascular anomalies are often seen and those that impact blood supply to the kidneys can induce severe hypertension especially in children (pheochromocytomas are also a risk).  Coarctations and aneurysmal anomalies can obstruct the blood supply to major organs, sometimes acutely.  Some degree of cognitive impairment and sometimes mental retardation can be seen in nearly half of patients, even in the absence of other obvious neurological deficits.  Short stature, tibial pseudoarthrosis, sphenoid dysplasia, and scoliosis are common.  Osteopenia and frank osteoporosis are seen in approximately half of patients.  A small percentage of patients develop malignant peripheral nerve sheath tumors (lifetime risk 8-13%).  Rare patients develop other malignancies, primarily sarcomas.

Diagnosis is based on the presence of some combination of typical features such as cafe-au-lait spots, Lisch nodules, neurofibromas, optic pathway gliomas, axillary or groin freckling, and bone dysplasia.  The underlying disease is progressive and the accuracy of diagnosis improves in older patients.

Genetics

The typical disease is caused by mutations in the NF1 gene (17q11.2) and inherited as an autosomal dominant disorder.  However, about half of patients have new mutations with males having the higher mutation rate.  Penetrance is nearly 100% among those who have mutations in NF1. There is evidence that the gene product is a tumor suppressor protein (neurofibromin) and the clinical features can also result from deactivation of both copies of the gene via the two hit mechanism of Knudson.  This has been proposed as a mechanism to explain the high degree of variability of clinical disease within families as the expression depends upon which cell lines experience postzygotic somatic mutations.

Watson syndrome (193520) is also the result of NF1 mutations and shares some clinical features such as neurofibromas, Lisch nodules, shortness of stature, cognitive deficits, and cafe-au-lait spots.  It may be an allelic disorder.

Neurofibromatosis type II (101000), with less cognitive problems, results from mutations in NF2.  Lisch nodules are less common in type II but acoustic neuromas are more common than in type I.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

There is no treatment for the underlying disease but lifelong monitoring is necessary because of the widespread manifestations and serious threat of complications such as visual impairment, renal hypertension and ischemia of major organs.

References
Article Title: 

Maroteaux-Lamy Syndrome (MPS VI)

Clinical Characteristics
Ocular Features: 

Corneal clouding is the cardinal ocular feature and is often visible by 5 years of age.  Several adult patients have had glaucoma with both open and closed angles.  The mechanism is unknown.  Optic nerve compression or secondary edema can cause a relatively sudden loss of vision.

Systemic Features: 

The lysosomal accumulation of glycosaminoglycans is responsible for the widespread signs and symptoms found in this disease.  Bone destruction in shoulders, hips and skull is often seen by the second decade of life and may become evident later in the knees and spine.  Early growth may be normal but eventually slows resulting in short stature.  Dysplasia of bones comprising these joints leads to stiffness and restricted movement.  The face is dysmorphic with coarse features.  Bone dysplasia and facial dysmorphism may be seen at birth.  Myelopathy and even tetraplegia can result from vertebral compression.  Intelligence is often normal although more severely affected individuals may have some cognitive defects.  Hepatosplenomegaly is common and compromised respiratory function can result in reduced physical stamina.  The tongue is usually enlarged.  Accumulation of dermatan sulfate in heart valves may produce insufficiency or restriction of outflow.

Genetics

MPS VI is a lysosomal storage disease inherited in an autosomal recessive pattern.  The responsible mutations lie in ARSB (5q11-q13), the gene that encodes the enzyme arylsulfatase B.  The phenotype results from defective dermatan sulfate breakdown with lysosomal accumulation.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Enzyme replacement therapy with galsulfase (Naglazyme®) is beneficial in alleviating some of the manifestations of this disease.  Orthopedic surgery for specific deformities may be necessary.  Visually significant corneal opacification may require corneal transplantation.

References
Article Title: 

Threshold effect of urinary glycosaminoglycans and the walk test as indicators of disease progression in a survey of subjects with Mucopolysaccharidosis VI (Maroteaux-Lamy syndrome)

Swiedler SJ, Beck M, Bajbouj M, Giugliani R, Schwartz I, Harmatz P, Wraith JE, Roberts J, Ketteridge D, Hopwood JJ, Guffon N, S?deg Miranda MC, Teles EL, Berger KI, Piscia-Nichols C. Threshold effect of urinary glycosaminoglycans and the walk test as indicators of disease progression in a survey of subjects with Mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). Am J Med Genet A. 2005 Apr 15;134A(2):144-50.

PubMed ID: 
15690405

Pages

Subscribe to RSS - short stature