iris dysplasia

Familial Acorea, Microphthalmia and Cataract Syndrome

Clinical Characteristics
Ocular Features: 

The pupil is obscured or absent secondary to fibrous overgrowth.  Microcornea and microphthalmia are present.  Iridocorneal adhesions are commonly seen on ultrasonic examination and anterior chamber angles may be narrow.  The corneas are clear but thickened centrally.  Nystagmus and esotropia have been reported.

The iris is rudimentary with a poorly developed stromal pattern and sometimes eccentrically located holes.  The ultrasound may reveal remnants of degenerative lens capsules.  Axial length in infants has been measured at about 14.7 mm but increases to 17 mm in children.  In adults the axial length is about 20 mm.  Refractive errors of +20-21 diopters have been measured.  Visual acuity is poor from birth but can be improved to some extent following pupiloplasty and lens extraction.  Intraocular pressure can be normal but one patient developed an increase in the 4th decade of life.  OCT and direct visualization of the fundus in several cases revealed normal retinal architecture and anatomy.

Systemic Features: 

None reported.  Specialty examinations failed to find any hearing loss or neurological deficits.

Genetics

The single 4 generation family tree reported is consistent with autosomal dominant inheritance.  Several likely loci on chromosomes 1, 5, 8, 11, and 17 have been reported but no candidate gene has been identified. 

Other conditions in which small pupils are found are Pierson syndrome (609049) and Warburg micro syndrome (600118) but these are associated with significant systemic abnormalities.  

Congenital microcoria (156600) is an autosomal dominant disorder with mild axial myopia and goniodysgenesis resulting from an unidentified mutation on chromosome 13.  Glaucoma is a common finding as is some iris hypoplasia.  Despite some clinical similarities, this is likely a unique disorder.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Some improvement in visual acuity has been reported following lensectomy and reconstruction of the pupil.

References
Article Title: 

Smith-Magenis Syndrome

Clinical Characteristics
Ocular Features: 

Ocular abnormalities have been found in the majority of patients.  Microcornea, myopia, strabismus and iris dysplasia are the most common.  Rare patients have iris colobomas or correctopia.  The eyes appear deep-set and lid fissures are upward slanting.

Systemic Features: 

The facial features are considered to be distinctive, characterized by a broad, square face, prominent forehead, broad nasal bridge, and midface hypoplasia.  These and other features appear more pronounced with age as in the size of the jaw which is underdeveloped in infancy and eventually becomes prognathic.  Most patients have developmental delays, speech and motor deficits, cognitive impairments and behavioral abnormalities.  Hypotonia, hyporeflexia, failure to thrive, lethargy, and feeding difficulties are common in infants.  Older individuals have REM sleep disturbances with self-destructive behaviors, aggression, inattention, hyperactivity, and impulsivity.  Short stature, hypodontia, brachydactyly, hearing loss, laryngeal anomalies, and peripheral neuropathy are common. Seizures are uncommon.

Genetics

Most patients (90%) with the Smith-Magenis syndrome have interstitial deletions in the short arm of chromosome 17 (17p11.2).  However, it is included here since a few have heterozygous molecular mutations in the RAI1 gene which is located in this region.  While there is considerable phenotypic overlap, individuals with chromosomal deletions have the more severe phenotype as might be expected.  For example, those with RAI1 mutations tend to be obese and are less likely to exhibit short stature, cardiac anomalies, hypotonia, hearing loss and motor delays than seen in patients with a deletion in chromosome 17.  However, the phenotype is highly variable among patients with deletions depending upon the nature and size of the deletion.

The retinoic acid induced 1 gene (RAI1) codes for a transcription factor whose activity is reduced by mutations within it.

Familial cases are rare and reproductive fitness is virtually zero.  If parental chromosomes are normal, the risk for recurrence in sibs is less than 1%.  Males and females are equally affected.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Medical monitoring, psychotropic medications and behavioral therapies are all useful.  Special education and vocational training may be helpful for those less severely affected.

References
Article Title: 

Axenfeld-Rieger Syndrome, Type 3

Clinical Characteristics
Ocular Features: 

The most important ocular feature is glaucoma, found in greater than 50% of patients.  It is frequently difficult to control and blindness is far too common.  The ocular phenotype has many similar features found in type 1 (RIEG1) but is discussed separately in this database since it is caused by a different mutation (see Axenfeld-Rieger syndrome, type 1 for a full description of the phenotype).  It has the typical findings of anterior segment dysgenesis including anterior displacement of Schwalbe's line, iris stromal hypoplasia, correctopia, and, of course, glaucoma.

Systemic Features: 

Patients with this type of Axenfeld-Rieger disorder are less likely to have the systemic anomalies such as craniofacial and dental defects often seen in RIEG1.  However, they often have a sensorineural hearing impairment and many have cardiac valvular and septal defects not usually seen in RIEG1.

Genetics

This is an autosomal dominant disorder resulting from a mutation in the FOXC1, a transcription factor gene located at 6p25.  Mutations in the same gene also cause iris hypoplasia/iridogoniodysgenesis (IGDA) (IRID1) 601631) which is sometimes reported as a unique disorder but is either allelic or the same disorder as the type of Axenfeld-Rieger syndrome discussed here.

Type 1 Axenfeld-Rieger syndrome (180500) results from mutations in the PITX1 transcription factor gene and type 4 from mutations in PRDM5, also a transcription factor gene.  However, digenic cases have also been reported with mutations in both PITX1 and FOXC1 genes.

The mutation responsible for type 2 Axenfeld-Rieger syndrome (601499) has as yet not been identified.  Diagnosis is best made by ruling out mutations in PITX1 and FOXC1 although it is claimed that maxillary hypoplasia and umbilical defects are less common in type 2.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

All patients with Axenfeld-Rieger syndromes must be monitored and treated for glaucoma throughout their lives.

References
Article Title: 

Axenfeld-Rieger Syndrome, Type 1

Clinical Characteristics
Ocular Features: 

Axenfeld-Rieger syndrome consists of a heterogeneous group of disorders with overlapping features.  Common to all types are the presence of ocular, dental, facial, skeletal abnormalities and autosomal dominant inheritance.  Anterior chamber dysgenesis of some form is universally present and severe glaucoma occurs in 50% of patients.  This may have its onset in childhood with typical symptoms of congenital glaucoma such as photophobia, excessive tearing and corneal clouding.  Hypoplasia of the iris is common and when progressive may result in an ectopic pupil and/or pseudopolycoria.  Iris insertion and Schwalbe's line are often anteriorly displaced with iridocorneal adhesions, a pattern that leads to the inclusion of this disorder among those with iridogoniodysgenesis or anterior chamber dysgenesis.  Pupillary ectropion of the posterior pigmented layer of the iris may be seen.

There is considerable clinical overlap among conditions with iris dysgenesis.  Some patients with typical systemic features of Axenfeld-Rieger syndrome may even have typical anterior chamber features of Axenfeld-Rieger anomaly in one eye and severe iris hypoplasia resembling aniridia in the other.

Systemic Features: 

Dental anomalies and mid-facial hypoplasia secondary to underdeveloped maxillary sinuses are among the most common systemic features in type 1.  The nasal root often appears abnormally broad and the lower lip appears to protrude. The teeth are frequently small and conical in shape with wide spaces between them (diastema).  Some teeth may be missing.  The umbilicus may fail to involute normally and retains excessive, redundant skin that sometimes leads to the erroneous diagnosis of an umbilical hernia for which unnecessary surgery may be performed.  Hypospadius is frequently present while cardiac defects, sensorineural deafness, and anal stenosis are less common.

Genetics

There is clinical and genetic heterogeneity in this syndrome and precise classification of many families remains elusive without knowing the genotype.  Mutations in at least four genes are responsible and all are are responsible for phenotypes transmitted in autosomal dominant patterns.  Type 1 discussed here is caused by a mutation in the homeobox transcription factor gene, PITX2, located at 4q25-q26.  A type of iris hypoplasia (IH)/iridogoniodysgenesis (IGDS) (IRID2; 137600) disorder has been classified separately but is caused by a mutation in PITX2 as well and many cases have the same systemic features.  Mutations in the same gene have also been found in ring dermoid of the cornea (180550) and in some cases of Peters anomaly (604229).

RIEG2 (601499) is rare but a deletion of 13q14 has been reported in several cases.  Mapping in a large family with 11 affected individuals yielded a locus in the same region.  Clinical signs overlap types 1 and 3 with dental, craniofacial, and ocular features, but with hearing impairment and rare umbilical anomalies.

Mutations in the FOXC1 gene (6p25) may be responsible for RIEG3 (602482).  However, a family has been reported with a severe 'Axenfeld-Rieger phenotype' in which a digenic etiology may have been responsible: patients had mutations in both FOXC1 and PITX2

Heterozygous mutations in the PRDM5 gene (4q25-q26) have been identified in 4 members of a Pakistani family with typical features of the Axenfeld-Rieger syndrome. It is labeled type 4 Axenfeld-Rieger syndrome in this database. 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

The presence of glaucoma requires prompt and vigorous treatment but control is difficult with blindness too often the result.  Oral surgery may be beneficial for dental problems.  Low vision aids can be useful.

References
Article Title: 

The Rieger syndrome

Jorgenson RJ, Levin LS, Cross HE, Yoder F, Kelly TE. The Rieger syndrome. Am J Med Genet. 1978;2(3):307-18.

PubMed ID: 
263445
Subscribe to RSS - iris dysplasia