hyperopia

Kenny-Caffey Syndrome, Type 2

Clinical Characteristics
Ocular Features: 

Congenital cataracts have been reported in one patient.  There is a report of pseudopapilledema in a 6 year old and another patient has been described with tortuous and dilated retinal vessels.  The hyperopia is likely the result of the small globes.  In an autopsied patient microscopic calcification was noted in the cornea and the retina.

Systemic Features: 

Hypocalcemia and hyperphosphatemia similar to hypoparathyroidism is seen in individuals with KCS2 but it may be transient and self-limited.  Macrocephaly with short stature is characteristic.  Alopecia, delayed closure of the anterior fontanel, and apparent thickening of the cortex in long bones may be seen.  Males have small testicles but there is no evidence regarding fertility.  In an autopsied case no parathyroid tissue could be identified.  Brain imaging may show calcification in the basal ganglia, dentate nuclei, and parts of the cerebrum and cerebellum.  Intelligence is normal.

Genetics

Several heterozygous mutations in the FAM111A gene (11q12.1) have been found.  Many of these seem to be new mutations but there are a number of published families in which there was transmission from mother to child (of both sexes).

Heterozygous mutations in the same gene are responsible for the autosomal dominant  allelic disorder known as Gracile Bone Dysplasia (602361). 

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Normalization of serum calcium and phosphorous levels would likely be beneficial but complete correction of all the findings is unlikely.  Removal of congenital cataracts should be considered.

References
Article Title: 

FAM111A mutations result in hypoparathyroidism and impaired skeletal development

Unger S, Gorna MW, Le Bechec A, Do Vale-Pereira S, Bedeschi MF, Geiberger S, Grigelioniene G, Horemuzova E, Lalatta F, Lausch E, Magnani C, Nampoothiri S, Nishimura G, Petrella D, Rojas-Ringeling F, Utsunomiya A, Zabel B, Pradervand S, Harshman K, Campos-Xavier B, Bonafe L, Superti-Furga G, Stevenson B, Superti-Furga A. FAM111A mutations result in hypoparathyroidism and impaired skeletal development. Am J Hum Genet. 2013 Jun 6;92(6):990-5.

PubMed ID: 
23684011

Ocular findings in Kenny's syndrome

Boynton JR, Pheasant TR, Johnson BL, Levin DB, Streeten BW. Ocular findings in Kenny's syndrome. Arch Ophthalmol. 1979 May;97(5):896-900.

PubMed ID: 
444124

Chorioretinopathy with Microcephaly 3

Clinical Characteristics
Ocular Features: 

The eyes are not notably small although several patients have been reported to have significant hyperopia.  Vision can be impaired and some individuals have early-onset nystagmus.  The ERG responses are attenuated and may be absent.  The retina is dysplastic with multiple atrophic punched-out lesions, attenuated retinal vessels, and sparse pigmentation. Large retinal folds have been described and one patient developed a retinal detachment.  Optic atrophy was noted in one individual.

Systemic Features: 

Microcephaly of 3-4 standard deviations below normal is a constant feature.  Motor and language abilities can be mildly delayed and  several patients have had mild learning difficulties.   Brain imaging has been normal in most individuals but a shortened and thin corpus callosum was present in one patient.

Genetics

Family and genetic evidence suggest autosomal recessive inheritance.  Compound heterozygous mutations in the TUBGCP4 gene (15q15.3) code for part of a protein complex involved in microtubule organization.

For a somewhat similar condition with a different mutation involving the same microtubule complex see Chorioretinopathy with Microcephaly 1 (251270).

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Low vision aids may be helpful in selected patients.

References
Article Title: 

Mutations in TUBGCP4 Alter Microtubule Organization via the γ-Tubulin Ring Complex in Autosomal-Recessive Microcephaly with Chorioretinopathy

Scheidecker S, Etard C, Haren L, Stoetzel C, Hull S, Arno G, Plagnol V, Drunat S, Passemard S, Toutain A, Obringer C, Koob M, Geoffroy V, Marion V, Strahle U, Ostergaard P, Verloes A, Merdes A, Moore AT, Dollfus H. Mutations in TUBGCP4 Alter Microtubule Organization via the g-Tubulin Ring Complex in Autosomal-Recessive Microcephaly with Chorioretinopathy. Am J Hum Genet. 2015 Apr 2;96(4):666-74.

PubMed ID: 
25817018

Nanophthalmos 1

Clinical Characteristics
Ocular Features: 

The axial length ranges from 17.55 to 19.28 mm with a mean of 18.13 mm.  The mean refractive error was +9.88 in one reported family but ranged from +7.25 to +13.00.  More than half of reported patients have developed angle closure glaucoma.  Patients are at risk for strabismus and amblyopia.  Choroidal detachments are often seen in nanophthalmic eyes.

Histological studies on full thickness sclerotomy tissue from a nanophthalmic eye showed frayed and split collagen fibrils with lightly stained cores predominantly in the sclera and episcleral regions which may contribute to the anatomical changes.

Systemic Features: 

None have been reported.

Genetics

No mutation has been described but this autosomal dominant condition maps to 11p.

Another type of autosomal dominant nanophthalmos (NNO3) (611897) maps to 2q22-q14, and yet another, nanophthalmos AD, results from mutations in TMEM98.

Nanophthalmos may also be inherited in an autosomal recessive pattern.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Lifelong monitoring is required because of the risk of angle closure.  Intraocular surgery such as lens extractions carries a high risk of complications.

References
Article Title: 

Nanophthalmos AD

Clinical Characteristics
Ocular Features: 

In the family reported, vision ranged from NLP to 20/20.  Refractive errors ranged from +8.25 to +15.50 D (mean +11.8 D).  Axial length ranged from 16.90 to 18.46 mm with a mean of 17.6 mm.  Angle closure glaucoma was diagnosed in 6 of 16 (37%) patients. Thickened sclera with prominent scleral vessels was described in affected family members.  Optic nerve drusen are often present and increased tortuosity of the retinal vessels has been described.

Systemic Features: 

No systemic abnormalities have been reported in spite of the fact that the TMEM98 gene is widely expressed in body tissues. 

Genetics

This is an autosomal dominant disorder resulting from a missense mutation in exon 8 of the TMEM98 (17p12-q12) gene.  The mutation has been reported in a single Australian family.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Lens removal may be considered in individuals with shallow anterior chambers and narrow angles but frequent postoperative macular edema and choroidal effusions have been seen and the visual prognosis is guarded.

References
Article Title: 

Macular Edema, Autosomal Dominant Cystoid

Clinical Characteristics
Ocular Features: 

Only a few families have been reported.  The macular edema can be traced to retinal capillary leakage throughout the posterior pole as revealed by fluorescein angiography.  Scattered exudates and nerve fiber layer hemorrhages are sometimes seen.  Hyperopia and strabismus are often present as well.  Veils, strands, and white punctate deposits in the vitreous have been described.  Wrinkling of the internal limiting membrane may be present.  The ERG is normal except for elevated rod dark adaptation thresholds.  Light/dark ratios are abnormal on EOG testing and mild dyschromatopsia can be demonstrated.  Patients usually notice problems with their visual acuity in the second decade of life and it can drop to 20/200 at this time with progression to 2/120 - 2/200 in older individuals.  In later stages of the disease a central zone of beaten bronze macular atrophy can be seen.  Surrounding this central atrophy is often an area with pigmentary changes resembling retinitis pigmentosa which can extend into the periphery.

This would seem to be a unique disorder in spite of some similarities to retinitis pigmentosa in which macular cysts are often seen.  The clinical course is distinctly different and the presence of vitreous deposits and hyperopia also can be used as arguments for its separateness.  Molecular DNA evidence showing lack of allelism (Vida infra) is, of course the strongest evidence.

Systemic Features: 

No systemic abnormalities have been reported.

Genetics

This autosomal dominant form of progressive macular dystrophy is linked to a locus at 7p21-p15.  The mutation is close to the RP9 locus causing one type of retinitis pigmentosa but linkage analysis shows the two disorders to be non-allelic.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

No specific treatment is available for the macular disease but low vision aids are likely useful, at least early in the disease.

References
Article Title: 

Cockayne Syndrome, Type A

Clinical Characteristics
Ocular Features: 

A progressive pigmentary retinopathy of a salt-and-pepper type and optic atrophy are commonly seen.  Retinal vessels are often narrowed and older patients can have typical bone spicule formation.  Night blindness, strabismus, and nystagmus may be present as well.  Enophthalmos, hyperopia, poor pupillary responses, and cataracts have been observed.  The lens opacities may in the nucleus or in the posterior subcapsular area and are often present in early childhood.  The ERG is often flat but may show some scotopic and photopic responses which are more marked in older individuals.  Vision loss is progressive but is better than expected in some patients based on the retina and optic nerve appearance.  The cornea may have evidence of exposure keratitis as many patients sleep with their eyes incompletely closed.  Recurrent corneal erosions have been reported in some patients.

The complete ocular phenotype and its natural history have been difficult to document due to the aggressive nature of this disease.

Ocular histopathology in a single patient (type unknown) revealed widespread pigment dispersion, degeneration of all retinal layers as well as thinning of the choriocapillaris and gliosis of the optic nerve.  Excessive lipofuscin deposition in the RPE was seen.

Systemic Features: 

Slow somatic growth and neural development are usually noted in the first few years of life.  Young children may acquire some independence and motor skills but progressive neurologic deterioration is relentless with loss of milestones and eventual development of mental retardation or dementia.  Patients often appear small and cachectic, with a 'progeroid' appearance.  The hair is thin and dry, and the skin is UV-sensitive but the risk of skin cancer is not increased.  Sensorineural hearing loss and dental caries are common.  Skeletal features include microcephaly, kyphosis, flexion contractures of the joints, large hands and feet, and disproportionately long arms and legs.  Perivascular calcium deposits are often seen, particularly in various brain structures while the brain is small with diffuse atrophy and patchy demyelination of white matter.  Peripheral neuropathy is characterized by slow conduction velocities.  Poor thermal regulation is often a feature. 

Type A is considered the classic form of CS.  Neurological deterioration and atherosclerotic disease usually lead to death early in the 2nd decade of life but some patients have lived into their 20s.  

Genetics

There is a great deal of clinical heterogeneity in Cockayne syndrome.  Type A results from homozygous or heterozygous mutations in ERCC8 (5q12).  CS type B (133540), is caused by mutations in ERCC6, and has an earlier onset with more rapidly progressive disease.  Both mutations impact excision-repair cross-complementing proteins important for DNA repair during replication.

Type III (216411) is poorly defined but seems to have a considerably later onset and milder disease.  The mutation in type III is unknown. 

Some patients have combined phenotypical features of Cockayne syndrome (CS) and xeroderma pigmentosum (XP) known as the XP-CS complex (216400).  Defective DNA repair resulting from mutations in nucleotide excision-repair cross-complementing or ERCC genes is common to both disorders.  Two complementation groups have been identified in CS and seven in XP.  XP patients with CS features fall into only three (B, D, G) of the XP groups.  XP-CS patients have extreme skin photosensitivity and a huge increase in skin cancers of all types.  They also have an increase in nervous system neoplasms. 

There may be considerable overlap in clinical features and rate of disease progression among all types.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

No specific treatment is available for Cockayne syndrome.  Supportive care for specific health problems, such as physical therapy for joint contractures, is important. 

Justification of cataract extraction should be made on a case by case basis.  Lagophthalmos requires that corneal lubrication be meticulously maintained.

References
Article Title: 

The Cockayne Syndrome Natural History (CoSyNH) study: clinical findings in 102 individuals and recommendations for care

Wilson BT, Stark Z, Sutton RE, Danda S, Ekbote AV, Elsayed SM, Gibson L, Goodship JA, Jackson AP, Keng WT, King MD, McCann E, Motojima T, Murray JE, Omata T, Pilz D, Pope K, Sugita K, White SM, Wilson IJ. The Cockayne Syndrome Natural History (CoSyNH) study: clinical findings in 102 individuals and recommendations for care. Genet Med. 2015 Jul 23. doi: 10.1038/gim.2015.110. [Epub ahead of print].

PubMed ID: 
26204423

Ocular findings in Cockayne syndrome

Traboulsi EI, De Becker I, Maumenee IH. Ocular findings in Cockayne syndrome. Am J Ophthalmol. 1992 Nov 15;114(5):579-83.

PubMed ID: 
1443019

Cockayne syndrome and xeroderma pigmentosum

Rapin I, Lindenbaum Y, Dickson DW, Kraemer KH, Robbins JH. Cockayne syndrome and xeroderma pigmentosum. Neurology. 2000 Nov 28;55(10):1442-9. Review. PubMed PMID:

PubMed ID: 
11185579

Leber Congenital Amaurosis

Clinical Characteristics
Ocular Features: 

Leber congenital amaurosis is a collective term applied to multiple recessively inherited conditions with early-onset retinal dystrophy causing infantile or early childhood blindness.  There are no established diagnostic criteria.  First signs are usually noted before the age of 6 months.  These consist of a severe reduction in vision accompanied by nystagmus, abnormal pupillary responses, and photophobia.  Ametropia in the form of hyperopia is common.  Keratoconus (and keratoglobus) is frequently found in older children but it is uncertain if this is a primary abnormality or secondary to eye rubbing as the latter is commonly observed.  Repeated pressure on the eye may also be responsible for the relative enophthalmos often seen in these patients.  The ERG is reduced or absent early and permanently.  Final visual acuity is seldom better than 20/400 and perhaps one-third of affected individuals have no light perception.  Some individuals experience a period of vision improvement.

The retina usually has pigmentary changes but these are not diagnostic.  Retinal vessels are generally attenuated.  The RPE may have a finely granulated appearance or, in some cases, whitish dots, and even 'bone spicules'.

Systemic Features: 

A variety of metabolic and physical abnormalities have been reported with LCA but many publications are from the pre-genomic era and the significance of such associations remains uncertain.  Most extraocular signs result from delays in mental development but it is uncertain what role, if any, that visual deprivation plays.  Perhaps 20% of patients are mentally retarded or have significant cognitive deficits.

Genetics

Leber congenital amaurosis is genetically heterogeneous with at least 18 known gene mutations associated with the phenotype.  It is also clinically heterogeneous both within and among families and this is the major obstacle to the delineation of individual clinicogenetic entities.  As more patients are genotyped, it is likely that more precise genotype-phenotype correlations will emerge.  At the present time, however, it is not possible to use clinical findings alone to distinguish individual conditions.

Below are links to the genotypic and phenotypic features of the 18 known types of LCA.  All cause disease in the homozygous or compound heterozygous state. 

LCA type               OMIM#                 Locus              Gene Symbol   

LCA 1                    204000                 7p13.1                 GUCY2D

LCA 2                    204100                 1p31                    RPE65**

LCA 3                    604232                 14q31.3               SPATA7

LCA 4                    604393                 17p13.1               AIPL1

LCA 5                    604537                 6q14.1                 LCA5

LCA 6                    613826                 14q11                  RPGRIP1

LCA 7                    613829                19q13.1                CRX*

LCA 8                    613835                 1q31-q32             CRB1

LCA 9                    608553                 1p36                    NMNAT1

LCA 10                  611755                 12q21                  CEP290

LCA 11                  613837                 7q31.3-q332        IMPDH1

LCA 12                  610612                 1q32.3                 RD3

LCA 13                  612712                 14q24.1               RDH12

LCA 14                  613341                 4q31                    LRAT

LCA 15                  613843                 6p21-31              TULP1

LCA 16                  614186                 2q37                    KCNJ13

LCA 17                  615360                 8q22.1                 GDF6

LCA 18                  608133                 6p21.1                 PRPH2***

It is likely that more mutant genes will be identified since these are found in only about half of patients studied in large series.  

*(Heterozygous mutations in CRX may also cause a cone-rod dystrophy).

**(Mutations in RPE65 has been described as also causing retinitis pigmentosa (RP20; 613794)  with choroidal involvement.)

***Mutations in PRPH2 (RDS) has also been reported to cause retinitis pigmentosa 7, choroidal dystrophy, and vitelliform macular dystrophy (179605) among others.

Mutations in the GUCY2D gene seem to be the most common being present in about 21% of LCA patients with CRB1 next at 10%.

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Until recently, no treatment was available for LCA.  However, results from early clinical trials with adeno-associated virus vector mediated gene therapy for RPE65 mutations in LCA 2 show promise.  Subretinal placement of recombinant  adeno-virus carrying RPE65 complementary DNA results in both subjective and objective improvements in visual function.  Patients generally report subjective improvement in light sensitivity and visual mobility.  Some recovery of rod and cone photoreceptor function has been documented.  Studies have also documented an improvement in visual acuity, size of visual field, pupillary responses, and in the amouunt of nystagmus.  More than 230 patients have now  been treated and improvements seem to be maintained for at least 3 or more years.  However, we have also learned that along with the enzymatic dysfunction of RPE65 that disrupts the visual cycle, there is also degeneration of photoreceptors which continues after treatment and the long term prognosis remains guarded. Multiple phase I clinical trials have demonstrated the safety of this approach and phase III trials are now underway.

It is crucial for patients to be enrolled early in sensory stimulation programs to ensure optimum neural development.  For patients with residual vision, low vision aids can be beneficial.  Vocational and occupational therapy should be considered for appropriate patients.

References
Article Title: 

Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease

Koenekoop RK, Wang H, Majewski J, Wang X, Lopez I, Ren H, Chen Y, Li Y,
Fishman GA, Genead M, Schwartzentruber J, Solanki N, Traboulsi EI, Cheng J, Logan
CV, McKibbin M, Hayward BE, Parry DA, Johnson CA, Nageeb M; Finding of Rare
Disease Genes (FORGE) Canada Consortium, Poulter JA, Mohamed MD, Jafri H, Rashid
Y, Taylor GR, Keser V, Mardon G, Xu H, Inglehearn CF, Fu Q, Toomes C, Chen R.
Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease
pathway for retinal degeneration
. Nat Genet. 2012 Jul 29.
 

PubMed ID: 
22842230

A dominant mutation in RPE65 identified by whole-exome sequencing causes retinitis pigmentosa with choroidal involvement

Bowne SJ, Humphries MM, Sullivan LS, Kenna PF, Tam LC, Kiang AS, Campbell M, Weinstock GM, Koboldt DC, Ding L, Fulton RS, Sodergren EJ, Allman D, Millington-Ward S, Palfi A, McKee A, Blanton SH, Slifer S, Konidari I, Farrar GJ, Daiger SP, Humphries P. A dominant mutation in RPE65 identified by whole-exome sequencing causes retinitis pigmentosa with choroidal involvement. Eur J Hum Genet. 2011 Oct;19(10):1074-81. Erratum in: Eur J Hum Genet. 2011 Oct;19(10):1109.

PubMed ID: 
21654732

Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial

Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L, Conlon TJ, Boye SL, Flotte TR, Byrne BJ, Jacobson SG. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther. 2008 Oct;19(10):979-90.

PubMed ID: 
18774912

Effect of gene therapy on visual function in Leber's congenital amaurosis

Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, Viswanathan A, Holder GE, Stockman A, Tyler N, Petersen-Jones S, Bhattacharya SS, Thrasher AJ, Fitzke FW, Carter BJ, Rubin GS, Moore AT, Ali RR. Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med. 2008 May 22;358(21):2231-9.

PubMed ID: 
18441371

Leber congenital amaurosis

Perrault I, Rozet JM, Gerber S, Ghazi I, Leowski C, Ducroq D, Souied E, Dufier JL, Munnich A, Kaplan J. Leber congenital amaurosis. Mol Genet Metab. 1999 Oct;68(2):200-8. Review.

PubMed ID: 
10527670

Nanophthalmos with Retinopathy

Clinical Characteristics
Ocular Features: 

This is a rare syndrome consisting of a pigmentary degeneration of the retina in association with nanophthalmos.  The globe is small with a thickened choroid and sclera and the macula becomes atrophic later in life. Some patients have cystic macular changes early without fluorescein leakage.  The anterior chamber is shallow, the angle is narrow, and the cornea may be small leading to angle closure glaucoma in most patients.  Extensive anterior and posterior synechiae can be seen.  The retina has a postequatorial bone spicule pattern of pigmentation with narrowing of arterial vessels.  Hyperopia is usually present and nightblindness may be noted in the first decade of life.  The ERG early shows loss of rod function and progression of the retinal disease subsequently leads to extinction of all rod and cone responses by midlife.  The EOG may be subnormal and visual fields are severely constricted.  Pallor and crowding of the optic nerve are common.  The vitreous may contain prominent fibrils and fine white granules.  Visual acuity is often 20/200 or worse.

Systemic Features: 

No systemic abnormalities have been reported.

Genetics

This is likely an autosomal recessive disorder based on frequent parental consanguinity and sibships with multiple affected individuals of both sexes.  However, the first reported family in 1958 with 13 affected individuals in 4 generations suggested autosomal dominant inheritance. No molecular defect has been identified.

This may be the same disorder as microphthalmia with retinitis pigmentosa (611040) in which so far no molecular mutation has been identified. 

Pedigree: 
Autosomal recessive
Treatment
Treatment Options: 

Narrow angles with shallow anterior chamber depth should be treated with prophylactic iridotomies.

References
Article Title: 

Corneal Dystrophy, Posterior Amorphous

Clinical Characteristics
Ocular Features: 

The iris abnormalities consisting of iridocorneal adhesions to Schwalbe's line and pupillary abnormalities suggest that PACD is a congenital disorder, perhaps a form of anterior chamber dysgenesis.  The corneal stroma and Descemet membrane contain sheet-like opacities with clear intervening areas.  These opacities are concentrated in the posterior stroma and are sometimes seen from limbus to limbus whereas in other cases they occur mostly peripherally.  The cornea may be thinner than normal and somewhat flattened.  There is little or no progression of the corneal opacification and vision varies widely.  Glaucoma has not been reported.

Histological and EM studies have revealed some fracturing and disorganization of the posterior stromal lamellae and focal attenuation of the endothelium.

Systemic Features: 

There is no associated systemic disease.

Genetics

A limited number of families with this disorder have been reported and the pattern in each is  generally consistent with autosomal dominant inheritance.  This may be a deletion syndrome based on the finding in a 1 year old African male with a heterozygous de novo deletion at 12q21.33-q22 containing 11 genes.  Anong the missing genes are those for the 4 small leucine-rich proteoglycans associated with this form of corneal dystrophy.  The parents did not have the deletion though.

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Treatment is generally not required but penetrating keratoplasty can benefit those whose vision is significantly impaired.

References
Article Title: 

EDICT Syndrome

Clinical Characteristics
Ocular Features: 

This is a rare disorder with multiple anterior segment anomalies.  The corneal stroma is thinned in the range of 330 to 460 um with uniform steepening (no cone).  The epithelium may be irregular and edematous, the stroma is diffusely hazy, and the endothelium is irregular with many guttae.  Anterior polar cataracts are likely congenital and often require removal before the age of 20 years.  The pupils are often eccentric and difficult to dilate.  The iris stroma may appear atrophic.  Visual acuity, even in the aphakic condition, is in the range of 20/30 to 20/160.

Histological studies show attenuation of the endothelium with cellular overlapping and aggregates of fibrillar material that stains for cytokeratin.  Descemet membrane is thickened as is the epithelial basement membrane and both intracellular and extracellular lipid deposition is seen throughout the stroma and the Bowman membrane.

Systemic Features: 

No systemic abnormalities have been reported.

Genetics

This is an autosomal dominant disorder resulting from a heterozygous single base substitution (57C-T) in the MIR184 gene (15q25.1).

Pedigree: 
Autosomal dominant
Treatment
Treatment Options: 

Cataract removal and penetrating keratoplasty can be helpful.  It is unknown whether the donor corneal tissue develops similar opacities.

References
Article Title: 

Pages

Subscribe to RSS - hyperopia